commit;
This commit is contained in:
		
							parent
							
								
									1070d41a00
								
							
						
					
					
						commit
						cce06d8710
					
				
							
								
								
									
										186
									
								
								src/app.py
								
								
								
								
							
							
						
						
									
										186
									
								
								src/app.py
								
								
								
								
							|  | @ -2816,6 +2816,12 @@ def bigscreen_page(): | |||
|     """渲染大屏展示页面""" | ||||
|     return render_template('bigscreen.html') | ||||
| 
 | ||||
| 
 | ||||
| @app.route('/bigscreenv2') | ||||
| def bigscreen_page_v2(): | ||||
|     """渲染大屏展示页面""" | ||||
|     return render_template('bigscreen_v2.html') | ||||
| 
 | ||||
| @app.route('/api/bigscreen_data', methods=['GET']) | ||||
| def bigscreen_data(): | ||||
|     """聚合大屏所需的12张图数据,便于前端一次性加载""" | ||||
|  | @ -3001,6 +3007,186 @@ def run_batch_hk_stock_price_collection(): | |||
|         logger.error(f"批量采集A股行情失败: {str(e)}") | ||||
|         return jsonify({"status": "error", "message": str(e)}) | ||||
| 
 | ||||
| @app.route('/api/portfolio/industry_allocation', methods=['GET']) | ||||
| def get_portfolio_industry_allocation(): | ||||
|     """获取行业持仓占比数据""" | ||||
|     try: | ||||
|         # 导入持仓分析器 | ||||
|         from src.valuation_analysis.portfolio_analyzer import PortfolioAnalyzer | ||||
|          | ||||
|         # 创建分析器实例 | ||||
|         analyzer = PortfolioAnalyzer() | ||||
|          | ||||
|         # 获取行业持仓分配数据 | ||||
|         result = analyzer.analyze_portfolio_allocation() | ||||
|          | ||||
|         if result.get("success"): | ||||
|             return jsonify({ | ||||
|                 "status": "success", | ||||
|                 "data": result["data"] | ||||
|             }) | ||||
|         else: | ||||
|             return jsonify({ | ||||
|                 "status": "error",  | ||||
|                 "message": result.get("message", "获取持仓数据失败") | ||||
|             }) | ||||
|              | ||||
|     except Exception as e: | ||||
|         logger.error(f"获取行业持仓占比失败: {str(e)}") | ||||
|         return jsonify({'status': 'error', 'message': str(e)}) | ||||
| 
 | ||||
| @app.route('/api/notice/list', methods=['GET']) | ||||
| def get_notice_list(): | ||||
|     """获取重要提醒列表""" | ||||
|     try: | ||||
|         # 模拟数据 - 实际项目中应该从数据库或外部API获取 | ||||
|         mock_notices = [ | ||||
|             "上证指数突破3200点,市场情绪回暖", | ||||
|             "北向资金今日净流入85.6亿元", | ||||
|             "科技板块PE估值处于历史低位", | ||||
|             "新能源概念股集体上涨,涨幅超3%", | ||||
|             "医药板块回调,建议关注低吸机会", | ||||
|             "融资融券余额连续三日增长", | ||||
|             "消费板块资金流入明显", | ||||
|             "市场恐贪指数回升至65", | ||||
|             "机器人概念板块技术面突破", | ||||
|             "先进封装概念获政策支持" | ||||
|         ] | ||||
|          | ||||
|         return jsonify({ | ||||
|             "status": "success", | ||||
|             "data": mock_notices | ||||
|         }) | ||||
|     except Exception as e: | ||||
|         logger.error(f"获取提醒列表失败: {str(e)}") | ||||
|         return jsonify({'status': 'error', 'message': str(e)}) | ||||
| 
 | ||||
| @app.route('/api/portfolio/summary', methods=['GET']) | ||||
| def get_portfolio_summary(): | ||||
|     """获取持仓摘要信息""" | ||||
|     try: | ||||
|         # 导入持仓分析器 | ||||
|         from src.valuation_analysis.portfolio_analyzer import PortfolioAnalyzer | ||||
|          | ||||
|         # 创建分析器实例 | ||||
|         analyzer = PortfolioAnalyzer() | ||||
|          | ||||
|         # 获取持仓摘要数据 | ||||
|         result = analyzer.get_portfolio_summary() | ||||
|          | ||||
|         if result.get("success"): | ||||
|             return jsonify({ | ||||
|                 "status": "success", | ||||
|                 "data": result["data"] | ||||
|             }) | ||||
|         else: | ||||
|             return jsonify({ | ||||
|                 "status": "error",  | ||||
|                 "message": result.get("message", "获取持仓摘要失败") | ||||
|             }) | ||||
|              | ||||
|     except Exception as e: | ||||
|         logger.error(f"获取持仓摘要失败: {str(e)}") | ||||
|         return jsonify({'status': 'error', 'message': str(e)}) | ||||
| 
 | ||||
| @app.route('/api/portfolio/industry_holdings', methods=['GET']) | ||||
| def get_industry_holdings_detail(): | ||||
|     """获取指定行业的详细持仓信息""" | ||||
|     try: | ||||
|         industry_name = request.args.get('industry_name') | ||||
|         if not industry_name: | ||||
|             return jsonify({'status': 'error', 'message': '缺少必要参数: industry_name'}), 400 | ||||
|              | ||||
|         # 导入持仓分析器 | ||||
|         from src.valuation_analysis.portfolio_analyzer import PortfolioAnalyzer | ||||
|          | ||||
|         # 创建分析器实例 | ||||
|         analyzer = PortfolioAnalyzer() | ||||
|          | ||||
|         # 获取行业详细持仓数据 | ||||
|         result = analyzer.get_industry_holdings_detail(industry_name) | ||||
|          | ||||
|         if result.get("success"): | ||||
|             return jsonify({ | ||||
|                 "status": "success", | ||||
|                 "data": result["data"] | ||||
|             }) | ||||
|         else: | ||||
|             return jsonify({ | ||||
|                 "status": "error",  | ||||
|                 "message": result.get("message", "获取行业持仓详情失败") | ||||
|             }) | ||||
|              | ||||
|     except Exception as e: | ||||
|         logger.error(f"获取行业持仓详情失败: {str(e)}") | ||||
|         return jsonify({'status': 'error', 'message': str(e)}) | ||||
| 
 | ||||
| 
 | ||||
| @app.route('/api/valuation/indicator', methods=['POST']) | ||||
| def analyze_valuation_indicator(): | ||||
|     """分析股票应该使用PE还是PB估值 | ||||
|     POST参数: | ||||
|     - stock_code: 股票代码 (例如: 000001) | ||||
|     - stock_name: 股票名称 (例如: 平安银行) | ||||
|      | ||||
|     返回格式: | ||||
|     { | ||||
|         "status": "success", | ||||
|         "data": { | ||||
|             "recommended_indicator": "PB", | ||||
|             "reasoning": "平安银行属于金融服务业,作为商业银行,其商业模式基于资产负债管理。金融机构的盈利受拨备、利率、市场波动影响而不够稳定。基于金融业的特殊性,PB是更合适的估值指标..." | ||||
|         } | ||||
|     } | ||||
|     """ | ||||
|     try: | ||||
|         # 从POST表单参数获取 | ||||
|         stock_code = request.form.get('stock_code') | ||||
|         stock_name = request.form.get('stock_name') | ||||
|          | ||||
|         if not stock_code or not stock_name: | ||||
|             return jsonify({ | ||||
|                 "status": "error",  | ||||
|                 "message": "缺少必要参数: stock_code 或 stock_name" | ||||
|             }), 400 | ||||
|          | ||||
|         # 导入估值指标分析器 | ||||
|         try: | ||||
|             from src.valuation_analysis.valuation_indicator_analyzer import ValuationIndicatorAnalyzer | ||||
|             logger.info("成功导入估值指标分析器") | ||||
|         except ImportError as e: | ||||
|             logger.error(f"无法导入估值指标分析器: {str(e)}") | ||||
|             return jsonify({ | ||||
|                 "status": "error",  | ||||
|                 "message": f"服务器配置错误: 估值指标分析器不可用,错误详情: {str(e)}" | ||||
|             }), 500 | ||||
|          | ||||
|         # 创建分析器实例 | ||||
|         analyzer = ValuationIndicatorAnalyzer() | ||||
|          | ||||
|         # 执行分析 | ||||
|         result = analyzer.analyze_valuation_indicator(stock_code, stock_name) | ||||
|          | ||||
|         if result.get("success"): | ||||
|             return jsonify({ | ||||
|                 "status": "success", | ||||
|                 "data": { | ||||
|                     "recommended_indicator": result.get("recommended_indicator"), | ||||
|                     "reasoning": result.get("reasoning", "") | ||||
|                 } | ||||
|             }) | ||||
|         else: | ||||
|             return jsonify({ | ||||
|                 "status": "error", | ||||
|                 "message": result.get("error", "分析失败,无详细信息") | ||||
|             }), 500 | ||||
|              | ||||
|     except Exception as e: | ||||
|         logger.error(f"估值指标分析失败: {str(e)}") | ||||
|         return jsonify({ | ||||
|             "status": "error",  | ||||
|             "message": f"估值指标分析失败: {str(e)}" | ||||
|         }), 500 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
| 
 | ||||
|     # 启动Web服务器 | ||||
|  |  | |||
|  | @ -11,7 +11,7 @@ XUEQIU_HEADERS = { | |||
|     'Accept-Encoding': 'gzip, deflate, br, zstd', | ||||
|     'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', | ||||
|     'Client-Version': 'v2.44.75', | ||||
|     'Cookie': 'cookiesu=811743062689927; device_id=33fa3c7fca4a65f8f4354e10ed6b7470; smidV2=20250327160437f244626e8b47ca2a7992f30f389e4e790074ae48656a22f10; HMACCOUNT=8B64A2E3C307C8C0; s=c611ttmqlj; xq_is_login=1; u=8493411634; bid=4065a77ca57a69c83405d6e591ab5449_m8r2nhs8; __utma=1.434320573.1747189698.1747189698.1747189698.1; __utmc=1; __utmz=1.1747189698.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); snbim_minify=true; _c_WBKFRo=dsWgHR8i8KGPbIyhFlN51PHOzVuuNytvUAFppfkD; _nb_ioWEgULi=; Hm_lvt_1db88642e346389874251b5a1eded6e3=1751936369; xq_a_token=ada154d4707b8d3f8aa521ff0c960aa7f81cbf9e; xqat=ada154d4707b8d3f8aa521ff0c960aa7f81cbf9e; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjg0OTM0MTE2MzQsImlzcyI6InVjIiwiZXhwIjoxNzU2MDAyNjgyLCJjdG0iOjE3NTM0MTA2ODI0MTQsImNpZCI6ImQ5ZDBuNEFadXAifQ.AlnzQSY7oGKGABfaQcFLg0lAJsDdvBMiwUbgpCMCBlbx6VZPKhzERxWiylQb4dFIyyECvRRJ73SbO9cD46fAqgzOgTxArNHtTKD4lQapTnyb11diDADnpb_nzzaRr4k_BYQRKXWtcJxdUMzde2WLy-eAkSf76QkXmKrwS3kvRm5gfqhdye44whw5XMEGoZ_lXHzGLWGz_PludHZp6W3v-wwZc_0wLU6cTb_KdrwWUWT_8jw5JHXnJEmuZmQI8QWf60DtiHIYCYXarxv8XtyHK7lLKhIAa3C2QmGWw5wv2HGz4I5DPqm2uMPKumgkQxycfAk56-RWviLZ8LAPF-XcbA; xq_r_token=92527e51353f90ba14d5fd16581e5a7a2780baa2; acw_tc=ac11000117534287625894768e00740076244cbad53d8039638dfe8ed0f4b1; is_overseas=1; .thumbcache_f24b8bbe5a5934237bbc0eda20c1b6e7=VRmy+KD3dGV+blntY70z3I+WQFcq8+JM1SqrC6E5295b/kwc4W5RkB+oXprCzEylFSeHXru7sQJDLmMr0mBJ+g%3D%3D; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1753429267; ssxmod_itna=eqGxBDnGKYuxcD4kDRgxYq7ueYKS8DBP01Dp2xQyP08D60DB40Q0KHhqDylYw0i2YwjCo0ZD5D/KCeGzDiLPGhDBWAFdYGdTt4NFtiowCWKGwktpe9flQbeeYGlcD0aK7G=x3EujH5Zn7iIiRoeDU4GnD0=O7YmKqxGGI4GwDGoD34DiDDpED03Db4D+4=bD7rTiocW=EjeDQ4GyDitDKLe=xi3DA4Djnl=qYiTdwDDBDGtON9aDG4GfSmDD0qtBeqT4DYP=5Pr8d29mpOWSneDMixGXz71+NI1yoYcrdvU6r+bOpPGuDG6CP3POd7nEaafY66i0DeGmKK+j0DrlDpYwMihyYwQGGiBqqQGo3qqCexhGC0G4ixqQARmPHK4vP2OIPeDEZgXDfExF0iY+K+mdFrKGmQGvwBP40PpFDC7KzBqG7W4QGt/D3ixt+R5BYobxxD; ssxmod_itna2=eqGxBDnGKYuxcD4kDRgxYq7ueYKS8DBP01Dp2xQyP08D60DB40Q0KHhqDylYw0i2YwjCo0ZYeDA4rYnRItORCDU1Z/PnDhxYG9pGD', | ||||
|     'Cookie': 'cookiesu=811743062689927; device_id=33fa3c7fca4a65f8f4354e10ed6b7470; smidV2=20250327160437f244626e8b47ca2a7992f30f389e4e790074ae48656a22f10; HMACCOUNT=8B64A2E3C307C8C0; s=c611ttmqlj; xq_is_login=1; u=8493411634; bid=4065a77ca57a69c83405d6e591ab5449_m8r2nhs8; __utma=1.434320573.1747189698.1747189698.1747189698.1; __utmc=1; __utmz=1.1747189698.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); snbim_minify=true; _c_WBKFRo=dsWgHR8i8KGPbIyhFlN51PHOzVuuNytvUAFppfkD; _nb_ioWEgULi=; Hm_lvt_1db88642e346389874251b5a1eded6e3=1751936369; xq_a_token=ada154d4707b8d3f8aa521ff0c960aa7f81cbf9e; xqat=ada154d4707b8d3f8aa521ff0c960aa7f81cbf9e; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjg0OTM0MTE2MzQsImlzcyI6InVjIiwiZXhwIjoxNzU2MDAyNjgyLCJjdG0iOjE3NTM0MTA2ODI0MTQsImNpZCI6ImQ5ZDBuNEFadXAifQ.AlnzQSY7oGKGABfaQcFLg0lAJsDdvBMiwUbgpCMCBlbx6VZPKhzERxWiylQb4dFIyyECvRRJ73SbO9cD46fAqgzOgTxArNHtTKD4lQapTnyb11diDADnpb_nzzaRr4k_BYQRKXWtcJxdUMzde2WLy-eAkSf76QkXmKrwS3kvRm5gfqhdye44whw5XMEGoZ_lXHzGLWGz_PludHZp6W3v-wwZc_0wLU6cTb_KdrwWUWT_8jw5JHXnJEmuZmQI8QWf60DtiHIYCYXarxv8XtyHK7lLKhIAa3C2QmGWw5wv2HGz4I5DPqm2uMPKumgkQxycfAk56-RWviLZ8LAPF-XcbA; xq_r_token=92527e51353f90ba14d5fd16581e5a7a2780baa2; acw_tc=0a27aa0f17542694317833912e006564153fcd1bb89f49a865e382d9953601; is_overseas=0; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1754269439; .thumbcache_f24b8bbe5a5934237bbc0eda20c1b6e7=HS+RscPvXRUz1ypZekks1pgGkAHHlHsHVuftTbDQCbUUaFqtm9BV4h7ghR2d5Nh+YD29otSyz2svRiKWvOJqgQ%3D%3D; ssxmod_itna=1-eqGxBDnGKYuxcD4kDRgxYq7ueYKS8DBP01Dp2xQyP08D60DB40Q0P6Dw1PtDCuq4wQWiYMrK4N4hGRtDl=YoDZDGFdDqx0Ei6Fi7HKzYhtBoqzWKjw_wv5YlCZMPO8//1P9PQCNzkOQ4hviDB3DbqDy/dePxYYjDBYD74G_DDeDixdDj4GmDGYtOeDFfCuNq6R5dxDwDB=DmMIbfeDEDG3D0fbeCLRYwDDBDGUFxtaDG4Gf0mDD0wDAo0jooDGWfnu4s6mkeFKN57G3x0tWDBL5QvG3x/lnoGWNVtlfkS2FkPGuDG6Ogl0kDqQO3i2AfP4KGGIm0iBPKY_5leOQDqQe4YwQGDpl0xliO7Gm0DOGDz0G4ixqYw1n0aSpwhixgPXieD1NZcX3ZXDK4rm0IlvYRGImxqnmmlG4eK40w4Am1BqGYeeGn5ixXWa3m2b/DDgi3YD; ssxmod_itna2=1-eqGxBDnGKYuxcD4kDRgxYq7ueYKS8DBP01Dp2xQyP08D60DB40Q0P6Dw1PtDCuq4wQWiYMrK4N4hGbYDiPbY44h7ie03dz7=3xDlouSdLRKl=Q_2YStYQ7OzOy_RBQ1oeziI2pkPsD8RSfPnSw5L7G4xcSPKKMxxoCD6zTiVCud28rNOm2tL7qASSMTjB2GcYPxzSRi94n0Kgjd6C6jKOMh5rMtOfkR2l8TGOPL277=81u9MRkBgIwRxDwx6iYEE4omE9FE1lonhzib3BUC6PD', | ||||
|     'Referer': 'https://weibo.com/u/7735765253', | ||||
|     'Sec-Ch-Ua': '"Chromium";v="122", "Not(A:Brand";v="24", "Google Chrome";v="122"', | ||||
|     'Sec-Ch-Ua-Mobile': '?0', | ||||
|  |  | |||
|  | @ -0,0 +1,376 @@ | |||
| """ | ||||
| 持仓分析模块 | ||||
| 
 | ||||
| 提供持仓数据获取和行业分类统计功能,包括: | ||||
| 1. 从外部API获取持仓数据 | ||||
| 2. 根据股票代码获取行业分类 | ||||
| 3. 计算各行业持仓金额和占比 | ||||
| """ | ||||
| 
 | ||||
| import requests | ||||
| import logging | ||||
| from typing import Dict, List, Optional | ||||
| from sqlalchemy import create_engine, text | ||||
| 
 | ||||
| from .config import DB_URL, LOG_FILE | ||||
| 
 | ||||
| # 配置日志 | ||||
| logging.basicConfig( | ||||
|     level=logging.INFO, | ||||
|     format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | ||||
|     handlers=[ | ||||
|         logging.FileHandler(LOG_FILE), | ||||
|         logging.StreamHandler() | ||||
|     ] | ||||
| ) | ||||
| logger = logging.getLogger("portfolio_analyzer") | ||||
| 
 | ||||
| 
 | ||||
| class PortfolioAnalyzer: | ||||
|     """持仓分析器类""" | ||||
| 
 | ||||
|     def __init__(self, db_url: str = DB_URL): | ||||
|         """ | ||||
|         初始化持仓分析器 | ||||
|          | ||||
|         Args: | ||||
|             db_url: 数据库连接URL | ||||
|         """ | ||||
|         self.engine = create_engine( | ||||
|             db_url, | ||||
|             pool_size=5, | ||||
|             max_overflow=10, | ||||
|             pool_recycle=3600 | ||||
|         ) | ||||
|         self.api_url = ("https://to.bmbs.tech/aim/app/v1/derivativeTrading/getTradingRecordList?" | ||||
|                         "projectId=182AE38B8C254BC88C715D86C643A6DD,C9B533175D294648A2372CB2966BCC96") | ||||
|         logger.info("持仓分析器初始化完成") | ||||
|      | ||||
|     def get_trading_records(self) -> Optional[Dict]: | ||||
|         """ | ||||
|         从外部API获取交易记录数据 | ||||
|          | ||||
|         Returns: | ||||
|             交易记录数据字典,如果请求失败返回None | ||||
|         """ | ||||
|         try: | ||||
|             headers = { | ||||
|                 'authUserIdYh': '4028816c6759b6cb01675aacc98a00f6' | ||||
|             } | ||||
|              | ||||
|             response = requests.get(self.api_url, headers=headers, timeout=10) | ||||
|             response.raise_for_status() | ||||
|              | ||||
|             data = response.json() | ||||
|             if data.get("success") and data.get("code") == 200: | ||||
|                 logger.info("成功获取交易记录数据") | ||||
|                 return data.get("data", {}) | ||||
|             else: | ||||
|                 logger.error(f"API返回错误: {data.get('message', '未知错误')}") | ||||
|                 return None | ||||
|                  | ||||
|         except requests.exceptions.RequestException as e: | ||||
|             logger.error(f"请求交易记录API失败: {e}") | ||||
|             return None | ||||
|         except Exception as e: | ||||
|             logger.error(f"处理交易记录数据失败: {e}") | ||||
|             return None | ||||
|      | ||||
|     def get_stock_industry(self, stock_code: str) -> List[str]: | ||||
|         """ | ||||
|         获取指定股票所属的行业列表 | ||||
|          | ||||
|         Args: | ||||
|             stock_code: 股票代码(格式如:603290.SH) | ||||
|              | ||||
|         Returns: | ||||
|             行业名称列表 | ||||
|         """ | ||||
|         try: | ||||
|             # 转换股票代码格式 | ||||
|             formatted_code = self._convert_stock_code_format(stock_code) | ||||
|              | ||||
|             query = text(""" | ||||
|                 SELECT DISTINCT bk_name  | ||||
|                 FROM gp_hybk  | ||||
|                 WHERE gp_code = :stock_code | ||||
|             """) | ||||
|              | ||||
|             with self.engine.connect() as conn: | ||||
|                 result = conn.execute(query, {"stock_code": formatted_code}).fetchall() | ||||
|                  | ||||
|             if result: | ||||
|                 return [row[0] for row in result] | ||||
|             else: | ||||
|                 logger.warning(f"未找到股票 {stock_code} 的行业数据") | ||||
|                 return [] | ||||
|                  | ||||
|         except Exception as e: | ||||
|             logger.error(f"获取股票行业失败: {e}") | ||||
|             return [] | ||||
|      | ||||
|     def _convert_stock_code_format(self, stock_code: str) -> str: | ||||
|         """ | ||||
|         转换股票代码格式 | ||||
|          | ||||
|         Args: | ||||
|             stock_code: 原始股票代码,格式如 "603290.SH" | ||||
|              | ||||
|         Returns: | ||||
|             转换后的股票代码,格式如 "SH603290" | ||||
|         """ | ||||
|         try: | ||||
|             code, market = stock_code.split('.') | ||||
|             return f"{market}{code}" | ||||
|         except Exception as e: | ||||
|             logger.error(f"转换股票代码格式失败: {str(e)}") | ||||
|             return stock_code | ||||
|      | ||||
|     def calculate_margin_amount(self, notional_principal: float, margin_rate: float) -> float: | ||||
|         """ | ||||
|         计算保证金金额 | ||||
|          | ||||
|         Args: | ||||
|             notional_principal: 名义本金 | ||||
|             margin_rate: 保证金率(百分比) | ||||
|              | ||||
|         Returns: | ||||
|             保证金金额 | ||||
|         """ | ||||
|         return notional_principal * (margin_rate / 100) | ||||
|      | ||||
|     def analyze_portfolio_allocation(self) -> Dict: | ||||
|         """ | ||||
|         分析持仓行业分配 | ||||
|          | ||||
|         Returns: | ||||
|             包含行业持仓占比的字典 | ||||
|         """ | ||||
|         try: | ||||
|             # 1. 获取交易记录数据 | ||||
|             trading_data = self.get_trading_records() | ||||
|             if not trading_data: | ||||
|                 return {"success": False, "message": "无法获取交易记录数据"} | ||||
|              | ||||
|             data_list = trading_data.get("dataList", []) | ||||
|             if not data_list: | ||||
|                 return {"success": False, "message": "交易记录数据为空"} | ||||
|              | ||||
|             # 2. 处理持仓数据 | ||||
|             industry_amounts = {}  # 行业金额统计 | ||||
|             total_amount = 0.0 | ||||
|              | ||||
|             for project in data_list: | ||||
|                 project_name = project.get("projectName", "") | ||||
|                 stock_code = project.get("stockCode", "") | ||||
|                 trading_records = project.get("tradingRecoderList", []) | ||||
|                  | ||||
|                 # 只处理未清仓的记录 | ||||
|                 for record in trading_records: | ||||
|                     if record.get("projectStatus") == "published": | ||||
|                         notional_principal = float(record.get("notionalPrincipal", 0)) | ||||
|                         margin_rate = float(record.get("marginRate", 0)) | ||||
|                          | ||||
|                         # 计算保证金金额 | ||||
|                         margin_amount = self.calculate_margin_amount(notional_principal, margin_rate) | ||||
|                         total_amount += margin_amount | ||||
|                          | ||||
|                         # 获取股票所属行业 | ||||
|                         industries = self.get_stock_industry(stock_code) | ||||
|                          | ||||
|                         if industries: | ||||
|                             # 如果股票属于多个行业,按行业数量平均分配 | ||||
|                             amount_per_industry = margin_amount / len(industries) | ||||
|                             for industry in industries: | ||||
|                                 if industry in industry_amounts: | ||||
|                                     industry_amounts[industry] += amount_per_industry | ||||
|                                 else: | ||||
|                                     industry_amounts[industry] = amount_per_industry | ||||
|                         else: | ||||
|                             # 如果无法获取行业信息,归类为"其他" | ||||
|                             other_industry = "其他" | ||||
|                             if other_industry in industry_amounts: | ||||
|                                 industry_amounts[other_industry] += margin_amount | ||||
|                             else: | ||||
|                                 industry_amounts[other_industry] = margin_amount | ||||
|              | ||||
|             # 3. 生成返回数据 | ||||
|             if not industry_amounts: | ||||
|                 return {"success": False, "message": "未找到有效的持仓数据"} | ||||
|              | ||||
|             # 按金额排序 | ||||
|             sorted_industries = sorted(industry_amounts.items(), key=lambda x: x[1], reverse=True) | ||||
|              | ||||
|             # 定义颜色映射 | ||||
|             colors = [ | ||||
|                 "#5470c6", "#91cc75", "#fac858", "#ee6666", "#73c0de", | ||||
|                 "#3ba272", "#fc8452", "#9a60b4", "#ea7ccc", "#ff9f7f" | ||||
|             ] | ||||
|              | ||||
|             industries_data = [] | ||||
|             for i, (industry, amount) in enumerate(sorted_industries): | ||||
|                 color = colors[i % len(colors)] | ||||
|                 industries_data.append({ | ||||
|                     "industry": industry, | ||||
|                     "amount": round(amount, 2), | ||||
|                     "color": color | ||||
|                 }) | ||||
|              | ||||
|             result = { | ||||
|                 "success": True, | ||||
|                 "data": { | ||||
|                     "total_amount": round(total_amount, 2), | ||||
|                     "industries": industries_data | ||||
|                 } | ||||
|             } | ||||
|              | ||||
|             logger.info(f"成功分析持仓行业分配,总金额: {total_amount:.2f}万元,共{len(industries_data)}个行业") | ||||
|             return result | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"分析持仓行业分配失败: {e}") | ||||
|             return {"success": False, "message": f"分析持仓行业分配失败: {str(e)}"} | ||||
|      | ||||
|     def get_portfolio_summary(self) -> Dict: | ||||
|         """ | ||||
|         获取持仓摘要信息 | ||||
|          | ||||
|         Returns: | ||||
|             持仓摘要信息字典 | ||||
|         """ | ||||
|         try: | ||||
|             # 1. 获取交易记录数据 | ||||
|             trading_data = self.get_trading_records() | ||||
|             if not trading_data: | ||||
|                 return {"success": False, "message": "无法获取交易记录数据"} | ||||
|              | ||||
|             data_list = trading_data.get("dataList", []) | ||||
|             if not data_list: | ||||
|                 return {"success": False, "message": "交易记录数据为空"} | ||||
|              | ||||
|             # 2. 统计信息 | ||||
|             total_projects = len(data_list) | ||||
|             active_projects = 0 | ||||
|             total_margin_amount = 0.0 | ||||
|             project_details = [] | ||||
|              | ||||
|             for project in data_list: | ||||
|                 project_name = project.get("projectName", "") | ||||
|                 stock_code = project.get("stockCode", "") | ||||
|                 trading_records = project.get("tradingRecoderList", []) | ||||
|                  | ||||
|                 project_margin = 0.0 | ||||
|                 has_active_position = False | ||||
|                  | ||||
|                 for record in trading_records: | ||||
|                     if record.get("projectStatus") == "published": | ||||
|                         has_active_position = True | ||||
|                         notional_principal = float(record.get("notionalPrincipal", 0)) | ||||
|                         margin_rate = float(record.get("marginRate", 0)) | ||||
|                         margin_amount = self.calculate_margin_amount(notional_principal, margin_rate) | ||||
|                         project_margin += margin_amount | ||||
|                  | ||||
|                 if has_active_position: | ||||
|                     active_projects += 1 | ||||
|                     total_margin_amount += project_margin | ||||
|                      | ||||
|                     # 获取行业信息 | ||||
|                     industries = self.get_stock_industry(stock_code) | ||||
|                     industry_names = ", ".join(industries) if industries else "未知" | ||||
|                      | ||||
|                     project_details.append({ | ||||
|                         "project_name": project_name, | ||||
|                         "stock_code": stock_code, | ||||
|                         "industry": industry_names, | ||||
|                         "margin_amount": round(project_margin, 2) | ||||
|                     }) | ||||
|              | ||||
|             # 3. 生成摘要 | ||||
|             summary = { | ||||
|                 "success": True, | ||||
|                 "data": { | ||||
|                     "total_projects": total_projects, | ||||
|                     "active_projects": active_projects, | ||||
|                     "total_margin_amount": round(total_margin_amount, 2), | ||||
|                     "project_details": project_details | ||||
|                 } | ||||
|             } | ||||
|              | ||||
|             logger.info(f"成功获取持仓摘要,总项目数: {total_projects},活跃项目数: {active_projects}") | ||||
|             return summary | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"获取持仓摘要失败: {e}") | ||||
|             return {"success": False, "message": f"获取持仓摘要失败: {str(e)}"}  | ||||
| 
 | ||||
|     def get_industry_holdings_detail(self, industry_name: str) -> Dict: | ||||
|         """ | ||||
|         获取指定行业的详细持仓信息 | ||||
|          | ||||
|         Args: | ||||
|             industry_name: 行业名称 | ||||
|              | ||||
|         Returns: | ||||
|             包含行业详细持仓信息的字典 | ||||
|         """ | ||||
|         try: | ||||
|             # 1. 获取交易记录数据 | ||||
|             trading_data = self.get_trading_records() | ||||
|             if not trading_data: | ||||
|                 return {"success": False, "message": "无法获取交易记录数据"} | ||||
|              | ||||
|             data_list = trading_data.get("dataList", []) | ||||
|             if not data_list: | ||||
|                 return {"success": False, "message": "交易记录数据为空"} | ||||
|              | ||||
|             # 2. 筛选该行业的持仓记录 | ||||
|             industry_holdings = [] | ||||
|              | ||||
|             for project in data_list: | ||||
|                 project_name = project.get("projectName", "") | ||||
|                 stock_code = project.get("stockCode", "") | ||||
|                 trading_records = project.get("tradingRecoderList", []) | ||||
|                  | ||||
|                 # 获取股票所属行业 | ||||
|                 industries = self.get_stock_industry(stock_code) | ||||
|                  | ||||
|                 # 检查是否属于指定行业 | ||||
|                 if industry_name in industries: | ||||
|                     for record in trading_records: | ||||
|                         if record.get("projectStatus") == "published": | ||||
|                             notional_principal = float(record.get("notionalPrincipal", 0)) | ||||
|                             margin_rate = float(record.get("marginRate", 0)) | ||||
|                             create_time = record.get("createTime", "") | ||||
|                              | ||||
|                             # 计算保证金金额 | ||||
|                             margin_amount = self.calculate_margin_amount(notional_principal, margin_rate) | ||||
|                              | ||||
|                             industry_holdings.append({ | ||||
|                                 "project_name": project_name, | ||||
|                                 "stock_code": stock_code, | ||||
|                                 "notional_principal": notional_principal, | ||||
|                                 "margin_rate": margin_rate, | ||||
|                                 "margin_amount": margin_amount, | ||||
|                                 "create_time": create_time | ||||
|                             }) | ||||
|              | ||||
|             # 3. 按保证金金额排序 | ||||
|             industry_holdings.sort(key=lambda x: x["margin_amount"], reverse=True) | ||||
|              | ||||
|             # 4. 生成返回数据 | ||||
|             result = { | ||||
|                 "success": True, | ||||
|                 "data": { | ||||
|                     "industry_name": industry_name, | ||||
|                     "total_count": len(industry_holdings), | ||||
|                     "total_margin_amount": sum(item["margin_amount"] for item in industry_holdings), | ||||
|                     "holdings": industry_holdings | ||||
|                 } | ||||
|             } | ||||
|              | ||||
|             logger.info(f"成功获取行业 {industry_name} 的详细持仓信息,共 {len(industry_holdings)} 条记录") | ||||
|             return result | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"获取行业详细持仓信息失败: {e}") | ||||
|             return {"success": False, "message": f"获取行业详细持仓信息失败: {str(e)}"}  | ||||
|  | @ -0,0 +1,334 @@ | |||
| # -*- coding: utf-8 -*- | ||||
| """ | ||||
| 估值指标分析专用聊天机器人 | ||||
| 专门用于分析股票应该使用PE还是PB估值 | ||||
| """ | ||||
| 
 | ||||
| import sys | ||||
| import os | ||||
| import logging | ||||
| from typing import Dict, Any, Optional | ||||
| from datetime import datetime | ||||
| 
 | ||||
| # 添加项目根目录到 Python 路径 | ||||
| sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) | ||||
| 
 | ||||
| from openai import OpenAI | ||||
| from src.scripts.config import get_random_api_key, get_model | ||||
| 
 | ||||
| # 设置日志 | ||||
| logger = logging.getLogger(__name__) | ||||
| 
 | ||||
| class ValuationChatBot: | ||||
|     """估值指标分析专用聊天机器人""" | ||||
|      | ||||
|     def __init__(self, model_type: str = "online_bot"): | ||||
|         """初始化估值分析聊天机器人 | ||||
|          | ||||
|         Args: | ||||
|             model_type: 要使用的模型类型,默认为联网智能体 | ||||
|         """ | ||||
|         try: | ||||
|             # 从配置获取API密钥 | ||||
|             self.api_key = get_random_api_key() | ||||
|             # 从配置获取模型ID | ||||
|             self.model = get_model(model_type) | ||||
|              | ||||
|             logger.info(f"初始化ValuationChatBot,使用模型: {self.model}") | ||||
|              | ||||
|             # 初始化OpenAI客户端 | ||||
|             self.client = OpenAI( | ||||
|                 base_url="https://ark.cn-beijing.volces.com/api/v3/bots", | ||||
|                 api_key=self.api_key | ||||
|             ) | ||||
|              | ||||
|             # 估值指标分析专用系统提示词 | ||||
|             self.system_message = { | ||||
|                 "role": "system", | ||||
|                 "content": """你是一名顶级的、注重第一性原理的基本面分析师。你的核心任务是深入剖析一家公司的内在价值驱动因素,并基于此判断“市盈盈率(PE)”和“市净率(PB)”哪个指标能更真实、更核心地反映其价值。 | ||||
| 
 | ||||
|                             **你的分析必须超越简单的行业标签,聚焦于公司的个性化特征。** 即使是同一行业的公司,由于商业模式和财务状况的差异,也可能适用不同的估值指标。 | ||||
| 
 | ||||
|                             **你的决策逻辑框架如下:** | ||||
| 
 | ||||
|                             1.  **【盈利质量与可预测性分析】 - 这是判断PE有效性的基石** | ||||
|                                 * **分析要点:** 公司的盈利是常态还是偶发?是内生增长还是外部输血?过去5年的盈利记录是否稳定且持续?是否存在大量非经常性损益扭曲了利润?公司的自由现金流状况如何,是否与净利润匹配? | ||||
|                                 * **决策倾向:** 如果盈利质量高、可预测性强,则PE的权重增加。如果盈利波动巨大、不可持续或为负,则PE的权重降低甚至失效。 | ||||
| 
 | ||||
|                             2.  **【资产价值与商业模式分析】 - 这是判断PB有效性的基石** | ||||
|                                 * **分析要点:** 公司的核心价值是沉淀在资产负债表上(如厂房、金融资产、土地),还是体现在资产负债表外(如品牌、技术、网络效应、客户关系)?公司的商业模式是“资产驱动型”还是“智力/品牌驱动型”? | ||||
|                                 * **决策倾向:** 如果公司价值与净资产高度相关(如金融、重资产制造、资源型企业),则PB的权重增加。如果公司是典型的轻资产模式,则PB的权重降低。 | ||||
| 
 | ||||
|                             3.  **【周期性与成长性交叉验证】** | ||||
|                                 * **分析要点:** 公司所处的行业周期性强弱如何?公司自身是否展现出超越行业的成长性或防御性? | ||||
|                                 * **决策倾向:** 强周期性会削弱PE在特定时点的有效性,使PB成为更稳健的参照。而强成长性(尤其是有利可图的成长)会显著提升PE的适用性。 | ||||
| 
 | ||||
|                             **最终决策原则:** | ||||
| 
 | ||||
|                             * **优先选择 PE 的核心理由:** 公司具备持续、稳定的盈利能力,并且其核心价值能通过利润得到体现。这是对股东回报最直接的衡量。 | ||||
|                             * **优先选择 PB 的核心理由:** 公司的盈利能力不可靠(周期性/亏损),或者其商业模式的根本是基于净资产的规模和质量(如金融业)。PB此时是衡量价值的“锚”或“底线”。 | ||||
| 
 | ||||
|                             **输出要求:** | ||||
| 
 | ||||
|                             1.  **明确结论:** 首先明确推荐PE或PB作为主要估值指标。 | ||||
|                             2.  **深入的个股特质分析:** | ||||
|                                 * **商业模式剖析:** 详细说明公司如何赚钱,其护城河是什么。 | ||||
|                                 * **财务特征分析:** 重点分析盈利的稳定性与质量、资产的轻重结构、现金流状况。 | ||||
|                                 * **行业背景补充:** 分析公司在行业中所处的生态位,有何不同于同行的特质。 | ||||
|                             3.  **提供决策依据:** 清晰地说明你是如何基于上述三层决策逻辑框架,最终做出选择的。 | ||||
|                             4.  **给出合理的估值区间建议:** 基于你选择的指标,并结合公司的历史估值水平和未来成长性,给出一个合理的估值区间。""" | ||||
|             } | ||||
|              | ||||
|             # 对话历史 | ||||
|             self.conversation_history = [self.system_message] | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"初始化ValuationChatBot时出错: {str(e)}") | ||||
|             raise | ||||
|      | ||||
|     def chat(self, user_input: str, temperature: float = 0.3, top_p: float = 0.7, max_tokens: int = 2048, frequency_penalty: float = 0.0) -> Dict[str, Any]: | ||||
|         """与AI进行估值指标分析对话 | ||||
|          | ||||
|         Args: | ||||
|             user_input: 用户输入的问题 | ||||
|             temperature: 控制输出的随机性,范围0-2,默认0.3(更确定性) | ||||
|             top_p: 控制输出的多样性,范围0-1,默认0.7 | ||||
|             max_tokens: 控制输出的最大长度,默认2048 | ||||
|             frequency_penalty: 频率惩罚,范围-2.0到2.0,默认0.0 | ||||
|              | ||||
|         Returns: | ||||
|             Dict包含对话结果 | ||||
|         """ | ||||
|         try: | ||||
|             # 添加用户消息到对话历史 | ||||
|             self.conversation_history.append({ | ||||
|                 "role": "user", | ||||
|                 "content": user_input | ||||
|             }) | ||||
|              | ||||
|             # 调用OpenAI API | ||||
|             response = self.client.chat.completions.create( | ||||
|                 model=self.model, | ||||
|                 messages=self.conversation_history, | ||||
|                 temperature=temperature, | ||||
|                 top_p=top_p, | ||||
|                 max_tokens=max_tokens, | ||||
|                 frequency_penalty=frequency_penalty | ||||
|             ) | ||||
|              | ||||
|             # 获取AI回复 | ||||
|             ai_response = response.choices[0].message.content | ||||
|              | ||||
|             # 添加AI回复到对话历史 | ||||
|             self.conversation_history.append({ | ||||
|                 "role": "assistant", | ||||
|                 "content": ai_response | ||||
|             }) | ||||
|              | ||||
|             # 保持对话历史在合理长度内(避免token过多) | ||||
|             if len(self.conversation_history) > 10: | ||||
|                 # 保留系统消息和最近的对话 | ||||
|                 self.conversation_history = [self.system_message] + self.conversation_history[-8:] | ||||
|              | ||||
|             logger.info(f"ValuationChatBot对话成功,回复长度: {len(ai_response)}") | ||||
|              | ||||
|             return { | ||||
|                 "success": True, | ||||
|                 "response": ai_response, | ||||
|                 "model": self.model, | ||||
|                 "timestamp": datetime.now().isoformat() | ||||
|             } | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"ValuationChatBot对话失败: {str(e)}") | ||||
|             return { | ||||
|                 "success": False, | ||||
|                 "error": str(e), | ||||
|                 "model": self.model, | ||||
|                 "timestamp": datetime.now().isoformat() | ||||
|             } | ||||
|      | ||||
|     def clear_history(self): | ||||
|         """清空对话历史""" | ||||
|         self.conversation_history = [self.system_message] | ||||
|         logger.info("ValuationChatBot对话历史已清空") | ||||
|      | ||||
|     def get_conversation_history(self) -> list: | ||||
|         """获取对话历史""" | ||||
|         return self.conversation_history.copy() | ||||
| 
 | ||||
| 
 | ||||
| class ValuationOfflineChatBot: | ||||
|     """估值指标分析专用离线聊天机器人""" | ||||
|      | ||||
|     def __init__(self, model_type: str = "offline_bot"): | ||||
|         """初始化离线估值分析聊天机器人 | ||||
|          | ||||
|         Args: | ||||
|             model_type: 要使用的模型类型,默认为离线模型 | ||||
|         """ | ||||
|         try: | ||||
|             # 尝试导入配置(参考chat_bot_with_offline.py的方式) | ||||
|             try: | ||||
|                 from src.scripts.config import get_model_config | ||||
|                 config = get_model_config("tl_qw_private", "GLM") | ||||
|                 logger.info("成功从src.scripts.config导入配置") | ||||
|             except ImportError: | ||||
|                 try: | ||||
|                     from scripts.config import get_model_config | ||||
|                     config = get_model_config("volc", "offline_model") | ||||
|                     logger.info("成功从scripts.config导入配置") | ||||
|                 except ImportError: | ||||
|                     logger.warning("无法导入配置模块,使用默认配置") | ||||
|                     # 使用默认配置 | ||||
|                     config = { | ||||
|                         "base_url": "https://ark.cn-beijing.volces.com/api/v3/", | ||||
|                         "api_key": "28cfe71a-c6fa-4c5d-9b4e-d8474f0d3b93", | ||||
|                         "model": "ep-20250326090920-v7wns" | ||||
|                     } | ||||
|              | ||||
|             # 保存配置信息 | ||||
|             self.api_key = config["api_key"] | ||||
|             self.model = config["model"] | ||||
|             self.base_url = config["base_url"] | ||||
|              | ||||
|             logger.info(f"初始化ValuationOfflineChatBot,使用模型: {self.model}") | ||||
|              | ||||
|             # 初始化OpenAI客户端 | ||||
|             self.client = OpenAI( | ||||
|                 base_url=self.base_url, | ||||
|                 api_key=self.api_key, | ||||
|                 timeout=600 | ||||
|             ) | ||||
|              | ||||
|             # 估值指标分析专用系统提示词(针对从分析报告中进行语义理解并提取最终结论) | ||||
|             self.system_message = { | ||||
|                 "role": "system", | ||||
|                 "content": """你是一个专注于**语义理解和结论提取**的AI。你的唯一任务是阅读一段分析报告,理解其核心论点,并判断作者最终推荐的估值指标是 "PE" 还是 "PB"。 | ||||
| 
 | ||||
|             **你的核心工作流程:** | ||||
| 
 | ||||
|             1.  **通读全文**:完整地阅读用户提供的分析报告,理解其对公司业务模式、盈利能力和资产结构的整体评价。 | ||||
| 
 | ||||
|             2.  **定位结论性语段**:重点关注报告的结尾部分或总结段落。寻找那些**承上启下、做出最终评判**的句子。这些句子不一定包含固定的关键词,但它们在语义上起到了总结和给出最终意见的作用。 | ||||
| 
 | ||||
|             3.  **进行意图判断**: | ||||
|                 * **判断为 "PE" 的信号**:如果结论性语段的中心思想是强调“盈利的稳定性”、“高质量的增长”、“强大的品牌价值”、“轻资产模式的优势”,并最终将这些优势导向了某个估值方法,那么结论就是 "PE"。 | ||||
|                     * *例子:* "考虑到该公司强大的品牌护城河和持续稳定的现金流创造能力,通过其盈利水平来评估价值显然是更为恰当的路径。" -> **应判断为 PE** | ||||
| 
 | ||||
|                 * **判断为 "PB" 的信号**:如果结论性语段的中心思想是强调“资产负债表的重要性”、“行业的周期性风险”、“盈利的不可靠性”,或者直接点明其“金融属性”,并基于这些论据做出最终选择,那么结论就是 "PB"。 | ||||
|                     * *例子:* "尽管公司短期盈利尚可,但其重资产和强周期的本质意味着盈利波动是常态,因此,基于其净资产的估值方法提供了一个更稳固的价值锚点。" -> **应判断为 PB** | ||||
| 
 | ||||
|             **你必须遵守的铁律:** | ||||
| 
 | ||||
|             * **你的任务是理解和提取,不是再次分析**。你必须相信报告原文的逻辑是自洽的,你的工作只是找出它的最终论点。 | ||||
|             * **只输出最终结果**:你的输出**必须且只能是** "PE" 或 "PB"。不要添加任何解释、理由或多余的字符。 | ||||
|             * **处理歧义**:如果在极少数情况下,报告的结论确实模棱两可,无法从语义上明确判断,**请默认输出 "PE"**,以确保程序健壮性。 | ||||
|             """ | ||||
|             } | ||||
|              | ||||
|             # 对话历史 | ||||
|             self.conversation_history = [self.system_message] | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"初始化ValuationOfflineChatBot时出错: {str(e)}") | ||||
|             raise | ||||
|      | ||||
|     def chat(self, user_input: str, temperature: float = 0.1, top_p: float = 0.7, max_tokens: int = 1024, frequency_penalty: float = 0.0) -> Dict[str, Any]: | ||||
|         """与离线AI进行估值指标分析对话 | ||||
|          | ||||
|         Args: | ||||
|             user_input: 用户输入的问题 | ||||
|             temperature: 控制输出的随机性,范围0-2,默认0.1(更确定性) | ||||
|             top_p: 控制输出的多样性,范围0-1,默认0.7 | ||||
|             max_tokens: 控制输出的最大长度,默认1024 | ||||
|             frequency_penalty: 频率惩罚,范围-2.0到2.0,默认0.0 | ||||
|              | ||||
|         Returns: | ||||
|             Dict包含对话结果 | ||||
|         """ | ||||
|         try: | ||||
|             # 添加用户消息到对话历史 | ||||
|             self.conversation_history.append({ | ||||
|                 "role": "user", | ||||
|                 "content": user_input | ||||
|             }) | ||||
|              | ||||
|             # 调用本地GLM模型 | ||||
|             ai_response = self._call_local_model(user_input, temperature, top_p, max_tokens, frequency_penalty) | ||||
|              | ||||
|             # 添加AI回复到对话历史 | ||||
|             self.conversation_history.append({ | ||||
|                 "role": "assistant", | ||||
|                 "content": ai_response | ||||
|             }) | ||||
|              | ||||
|             # 保持对话历史在合理长度内 | ||||
|             if len(self.conversation_history) > 6: | ||||
|                 self.conversation_history = [self.system_message] + self.conversation_history[-4:] | ||||
|              | ||||
|             logger.info(f"ValuationOfflineChatBot对话成功,回复长度: {len(ai_response)}") | ||||
|              | ||||
|             return { | ||||
|                 "success": True, | ||||
|                 "response": ai_response, | ||||
|                 "model": self.model, | ||||
|                 "timestamp": datetime.now().isoformat() | ||||
|             } | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"ValuationOfflineChatBot对话失败: {str(e)}") | ||||
|             return { | ||||
|                 "success": False, | ||||
|                 "error": str(e), | ||||
|                 "model": self.model, | ||||
|                 "timestamp": datetime.now().isoformat() | ||||
|             } | ||||
|      | ||||
|     def _call_local_model(self, user_input: str, temperature: float = 0.1, top_p: float = 0.7, max_tokens: int = 1024, frequency_penalty: float = 0.0) -> str: | ||||
|         """调用本地GLM模型""" | ||||
|         try: | ||||
|             # 调用本地模型API(使用初始化时创建的客户端) | ||||
|             response = self.client.chat.completions.create( | ||||
|                 model=self.model, | ||||
|                 messages=self.conversation_history, | ||||
|                 temperature=temperature, | ||||
|                 top_p=top_p, | ||||
|                 max_tokens=max_tokens, | ||||
|                 frequency_penalty=frequency_penalty, | ||||
|                 timeout=300 | ||||
|             ) | ||||
|              | ||||
|             # 获取AI回复 | ||||
|             ai_response = response.choices[0].message.content | ||||
|              | ||||
|             # 清理回复内容,确保只返回PE或PB | ||||
|             ai_response_clean = ai_response.strip().upper() | ||||
|             if "PE" in ai_response_clean and "PB" not in ai_response_clean: | ||||
|                 return "PE" | ||||
|             elif "PB" in ai_response_clean and "PE" not in ai_response_clean: | ||||
|                 return "PB" | ||||
|             elif ai_response_clean == "PE" or ai_response_clean == "PB": | ||||
|                 return ai_response_clean | ||||
|             else: | ||||
|                 # 如果回复不清晰,记录详细信息 | ||||
|                 logger.warning(f"本地模型回复不清晰: {ai_response_clean}") | ||||
|                 return "PE"  # 默认返回PE | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"调用本地模型失败: {str(e)}") | ||||
|             return "PE"  # 出错时默认返回PE | ||||
| 
 | ||||
|     def clear_history(self): | ||||
|         """清空对话历史""" | ||||
|         self.conversation_history = [self.system_message] | ||||
|         logger.info("ValuationOfflineChatBot对话历史已清空") | ||||
|      | ||||
|     def get_conversation_history(self) -> list: | ||||
|         """获取对话历史""" | ||||
|         return self.conversation_history.copy() | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     test_valuation_chat_bot()  | ||||
|  | @ -0,0 +1,397 @@ | |||
| # -*- coding: utf-8 -*- | ||||
| """ | ||||
| 估值指标分析器 | ||||
| 用于判断股票应该使用PE估值还是PB估值更合理 | ||||
| """ | ||||
| 
 | ||||
| import sys | ||||
| import os | ||||
| import logging | ||||
| from typing import Dict, Any, Optional, Tuple | ||||
| from datetime import datetime | ||||
| 
 | ||||
| # 添加项目根目录到 Python 路径 | ||||
| sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) | ||||
| 
 | ||||
| from src.valuation_analysis.valuation_chat_bot import ValuationChatBot | ||||
| from src.scripts.config import get_random_api_key, get_model | ||||
| 
 | ||||
| # 设置日志 | ||||
| logger = logging.getLogger(__name__) | ||||
| 
 | ||||
| class ValuationIndicatorAnalyzer: | ||||
|     """估值指标分析器""" | ||||
|      | ||||
|     def __init__(self): | ||||
|         """初始化分析器""" | ||||
|         try: | ||||
|             # 初始化联网大模型(使用专用估值分析聊天机器人) | ||||
|             self.online_chatbot = ValuationChatBot(model_type="online_bot") | ||||
|              | ||||
|             # 初始化本地GLM模型(使用专用估值分析离线聊天机器人) | ||||
|             try: | ||||
|                 from src.valuation_analysis.valuation_chat_bot import ValuationOfflineChatBot | ||||
|                 self.offline_chatbot = ValuationOfflineChatBot(model_type="offline_bot") | ||||
|                 self.has_offline_model = True | ||||
|             except ImportError: | ||||
|                 logger.warning("无法导入离线模型,将只使用联网模型") | ||||
|                 self.offline_chatbot = None | ||||
|                 self.has_offline_model = False | ||||
|                  | ||||
|             logger.info("估值指标分析器初始化成功") | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"初始化估值指标分析器失败: {str(e)}") | ||||
|             raise | ||||
|      | ||||
|     def analyze_valuation_indicator(self, stock_code: str, stock_name: str) -> Dict[str, Any]: | ||||
|         """ | ||||
|         分析股票应该使用PE还是PB估值 | ||||
|          | ||||
|         Args: | ||||
|             stock_code: 股票代码 | ||||
|             stock_name: 股票名称 | ||||
|              | ||||
|         Returns: | ||||
|             Dict包含分析结果 | ||||
|         """ | ||||
|         try: | ||||
|             logger.info(f"开始分析股票 {stock_name}({stock_code}) 的估值指标") | ||||
|              | ||||
|             # 第一步:使用联网大模型进行初步分析 | ||||
|             online_result = self._analyze_with_online_model(stock_code, stock_name) | ||||
|              | ||||
|             # 第二步:使用本地GLM模型进行格式化和验证 | ||||
|             if self.has_offline_model: | ||||
|                 offline_result = self._analyze_with_offline_model(stock_code, stock_name, online_result) | ||||
|             else: | ||||
|                 offline_result = online_result | ||||
|              | ||||
|             # 第三步:整合结果 | ||||
|             final_result = self._integrate_results(online_result, offline_result) | ||||
|              | ||||
|             logger.info(f"完成股票 {stock_name}({stock_code}) 的估值指标分析") | ||||
|             return final_result | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"分析股票 {stock_name}({stock_code}) 估值指标时出错: {str(e)}") | ||||
|             return { | ||||
|                 "success": False, | ||||
|                 "error": str(e), | ||||
|                 "recommended_indicator": None, | ||||
|                 "reasoning": None, | ||||
|                 "valuation_range": None | ||||
|             } | ||||
|      | ||||
|     def _analyze_with_online_model(self, stock_code: str, stock_name: str) -> Dict[str, Any]: | ||||
|         """ | ||||
|         使用联网大模型进行估值指标分析 | ||||
|          | ||||
|         Args: | ||||
|             stock_code: 股票代码 | ||||
|             stock_name: 股票名称 | ||||
|              | ||||
|         Returns: | ||||
|             联网模型的分析结果 | ||||
|         """ | ||||
|         try: | ||||
|             # 构建用户提示词(让联网大模型专注于分析推理,不输出估值区间) | ||||
|             user_prompt = f"""请深入分析股票代码为{stock_code}、名称为{stock_name}的公司,并判断其更适合使用PE还是PB进行估值。 | ||||
| 
 | ||||
|                                 你的分析应超越简单的行业标签,聚焦于该公司的个性化特征。请遵循以下分析框架,提供详细的、基于第一性原理的分析: | ||||
| 
 | ||||
|                                 1.  **盈利质量与可预测性分析**: | ||||
|                                     * 这家公司的盈利是稳定、持续的,还是波动巨大、难以预测的? | ||||
|                                     * 其净利润是否真实反映了业务的现金创造能力? | ||||
|                                     * 是否存在大量非经常性损益影响了其盈利的真实性? | ||||
| 
 | ||||
|                                 2.  **资产价值与商业模式分析**: | ||||
|                                     * 公司的核心价值更多体现在资产负债表内的有形资产(如设备、土地、金融资产),还是表外的无形资产(如品牌、技术、网络效应)? | ||||
|                                     * 它的商业模式是“资产驱动型”还是“智力/品牌驱动型”? | ||||
| 
 | ||||
|                                 3.  **周期性与成长性分析**: | ||||
|                                     * 公司所处行业的周期性强弱如何?它在周期中的位置是怎样的? | ||||
|                                     * 公司自身的成长性如何,是高于还是低于行业平均水平? | ||||
| 
 | ||||
|                                 4.  **最终决策与依据**: | ||||
|                                     * 综合以上分析,明确阐述你为什么认为PE或PB是更根本的估值指标。请详细说明你的决策逻辑,将公司的个性化特征与你的结论紧密联系起来。 | ||||
| 
 | ||||
|                                 请确保你的分析是客观、专业、有深度的。在本次分析中,请不要提供具体的估值区间,专注于提供选择估值指标的充分理由。""" | ||||
| 
 | ||||
|             # 调用联网模型 | ||||
|             response = self.online_chatbot.chat(user_prompt, temperature=0.3, max_tokens=2048) | ||||
|              | ||||
|             if response.get("success"): | ||||
|                 return { | ||||
|                     "success": True, | ||||
|                     "raw_response": response.get("response", ""), | ||||
|                     "model": "online" | ||||
|                 } | ||||
|             else: | ||||
|                 logger.error(f"联网模型分析失败: {response.get('error', '未知错误')}") | ||||
|                 return { | ||||
|                     "success": False, | ||||
|                     "error": response.get('error', '联网模型分析失败'), | ||||
|                     "model": "online" | ||||
|                 } | ||||
|                  | ||||
|         except Exception as e: | ||||
|             logger.error(f"使用联网模型分析时出错: {str(e)}") | ||||
|             return { | ||||
|                 "success": False, | ||||
|                 "error": str(e), | ||||
|                 "model": "online" | ||||
|             } | ||||
|      | ||||
|     def _analyze_with_offline_model(self, stock_code: str, stock_name: str, online_result: Dict[str, Any]) -> Dict[str, Any]: | ||||
|         """ | ||||
|         使用本地GLM模型提取最终的PE/PB推荐 | ||||
|          | ||||
|         Args: | ||||
|             stock_code: 股票代码 | ||||
|             stock_name: 股票名称 | ||||
|             online_result: 联网模型的分析结果 | ||||
|              | ||||
|         Returns: | ||||
|             本地模型的分析结果 | ||||
|         """ | ||||
|         try: | ||||
|             # 构建用户提示词(让本地GLM专注于提取最终结果) | ||||
|             user_prompt = f"""你是一个专注于语义理解和结论提取的AI。你的唯一任务是阅读一段分析报告,理解其核心论点,并判断作者最终推荐的估值指标是 "PE" 还是 "PB"。 | ||||
| 
 | ||||
|                             你的输出必须严格遵守以下规则: | ||||
|                             * 你的输出**必须且只能是** "PE" 或 "PB"。 | ||||
|                             * 不要添加任何解释、理由或多余的字符。 | ||||
|                             * 如果文本结论确实模棱两可,无法明确判断,**请默认输出 "PE"**。 | ||||
| 
 | ||||
|                             分析内容如下: | ||||
|                             --- | ||||
|                             {online_result.get('raw_response', '分析失败')} | ||||
|                             --- | ||||
|                             """ | ||||
| 
 | ||||
|             # 调用本地模型 | ||||
|             response = self.offline_chatbot.chat(user_prompt, temperature=0.1, max_tokens=10) | ||||
|              | ||||
|             if response.get("success"): | ||||
|                 return { | ||||
|                     "success": True, | ||||
|                     "raw_response": response.get("response", "").strip(), | ||||
|                     "model": "offline" | ||||
|                 } | ||||
|             else: | ||||
|                 logger.error(f"本地模型分析失败: {response.get('error', '未知错误')}") | ||||
|                 return { | ||||
|                     "success": False, | ||||
|                     "error": response.get('error', '本地模型分析失败'), | ||||
|                     "model": "offline" | ||||
|                 } | ||||
|                  | ||||
|         except Exception as e: | ||||
|             logger.error(f"使用本地模型分析时出错: {str(e)}") | ||||
|             return { | ||||
|                 "success": False, | ||||
|                 "error": str(e), | ||||
|                 "model": "offline" | ||||
|             } | ||||
|      | ||||
|     def _integrate_results(self, online_result: Dict[str, Any], offline_result: Dict[str, Any]) -> Dict[str, Any]: | ||||
|         """ | ||||
|         整合联网模型和本地模型的结果 | ||||
|          | ||||
|         Args: | ||||
|             online_result: 联网模型结果 | ||||
|             offline_result: 本地模型结果 | ||||
|              | ||||
|         Returns: | ||||
|             整合后的最终结果 | ||||
|         """ | ||||
|         try: | ||||
|             # 如果联网模型成功 | ||||
|             if online_result.get("success"): | ||||
|                 # 获取联网模型的分析内容 | ||||
|                 online_analysis = online_result.get("raw_response", "") | ||||
|                  | ||||
|                 # 如果本地模型也成功,使用本地模型提取的PE/PB推荐 | ||||
|                 if offline_result.get("success"): | ||||
|                     recommended_indicator = offline_result.get("raw_response", "").strip() | ||||
|                      | ||||
|                     # 验证推荐指标是否有效 | ||||
|                     if recommended_indicator in ["PE", "PB"]: | ||||
|                         return { | ||||
|                             "success": True, | ||||
|                             "recommended_indicator": recommended_indicator, | ||||
|                             "reasoning": online_analysis | ||||
|                         } | ||||
|                     else: | ||||
|                         # 本地模型输出无效,使用联网模型的结果 | ||||
|                         logger.warning(f"本地模型输出无效: {recommended_indicator}") | ||||
|                         return { | ||||
|                             "success": True, | ||||
|                             "recommended_indicator": self._extract_indicator_from_text(online_analysis), | ||||
|                             "reasoning": online_analysis | ||||
|                         } | ||||
|                 else: | ||||
|                     # 只有联网模型成功 | ||||
|                     return { | ||||
|                         "success": True, | ||||
|                         "recommended_indicator": self._extract_indicator_from_text(online_analysis), | ||||
|                         "reasoning": online_analysis | ||||
|                     } | ||||
|             else: | ||||
|                 # 联网模型失败 | ||||
|                 return { | ||||
|                     "success": False, | ||||
|                     "error": online_result.get("error", "分析失败") | ||||
|                 } | ||||
|                  | ||||
|         except Exception as e: | ||||
|             logger.error(f"整合结果时出错: {str(e)}") | ||||
|             return { | ||||
|                 "success": False, | ||||
|                 "error": str(e) | ||||
|             } | ||||
|      | ||||
|     def _extract_indicator_from_text(self, text: str) -> Optional[str]: | ||||
|         """从文本中提取推荐的估值指标""" | ||||
|         try: | ||||
|             import re | ||||
|              | ||||
|             # 查找推荐估值指标 | ||||
|             patterns = [ | ||||
|                 r'推荐估值指标[::]\s*(PE|PB)', | ||||
|                 r'应该使用\s*(PE|PB)\s*估值', | ||||
|                 r'选择\s*(PE|PB)\s*作为', | ||||
|                 r'优先选择\s*(PE|PB)' | ||||
|             ] | ||||
|              | ||||
|             for pattern in patterns: | ||||
|                 match = re.search(pattern, text, re.IGNORECASE) | ||||
|                 if match: | ||||
|                     return match.group(1).upper() | ||||
|              | ||||
|             return None | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"提取估值指标时出错: {str(e)}") | ||||
|             return None | ||||
|      | ||||
|     def _extract_reasoning_from_text(self, text: str) -> Dict[str, str]: | ||||
|         """从文本中提取推理过程""" | ||||
|         try: | ||||
|             reasoning = { | ||||
|                 "industry_analysis": "", | ||||
|                 "business_model_analysis": "", | ||||
|                 "financial_analysis": "", | ||||
|                 "decision_basis": "" | ||||
|             } | ||||
|              | ||||
|             # 简单的文本提取逻辑 | ||||
|             lines = text.split('\n') | ||||
|             current_section = None | ||||
|              | ||||
|             for line in lines: | ||||
|                 line = line.strip() | ||||
|                 if not line: | ||||
|                     continue | ||||
|                      | ||||
|                 if '行业特征分析' in line or '行业分析' in line: | ||||
|                     current_section = 'industry_analysis' | ||||
|                 elif '商业模式分析' in line or '业务模式分析' in line: | ||||
|                     current_section = 'business_model_analysis' | ||||
|                 elif '财务特征分析' in line or '财务分析' in line: | ||||
|                     current_section = 'financial_analysis' | ||||
|                 elif '决策依据' in line or '选择依据' in line: | ||||
|                     current_section = 'decision_basis' | ||||
|                 elif current_section and line: | ||||
|                     reasoning[current_section] += line + " " | ||||
|              | ||||
|             # 清理空白内容 | ||||
|             for key in reasoning: | ||||
|                 reasoning[key] = reasoning[key].strip() | ||||
|                  | ||||
|             return reasoning | ||||
|              | ||||
|         except Exception as e: | ||||
|             logger.error(f"提取推理过程时出错: {str(e)}") | ||||
|             return { | ||||
|                 "industry_analysis": "", | ||||
|                 "business_model_analysis": "", | ||||
|                 "financial_analysis": "", | ||||
|                 "decision_basis": "" | ||||
|             } | ||||
|      | ||||
|     def _extract_valuation_range_from_text(self, text: str) -> Dict[str, Any]: | ||||
|         """从文本中提取估值区间""" | ||||
|         try: | ||||
|             import re | ||||
|              | ||||
|             # 查找PE或PB的估值区间 | ||||
|             pe_pattern = r'PE.*?(\d+(?:\.\d+)?)[-~](\d+(?:\.\d+)?)' | ||||
|             pb_pattern = r'PB.*?(\d+(?:\.\d+)?)[-~](\d+(?:\.\d+)?)' | ||||
|              | ||||
|             pe_match = re.search(pe_pattern, text, re.IGNORECASE) | ||||
|             pb_match = re.search(pb_pattern, text, re.IGNORECASE) | ||||
|              | ||||
|             if pe_match: | ||||
|                 return { | ||||
|                     "type": "PE", | ||||
|                     "min_value": float(pe_match.group(1)), | ||||
|                     "max_value": float(pe_match.group(2)), | ||||
|                     "unit": "倍" | ||||
|                 } | ||||
|             elif pb_match: | ||||
|                 return { | ||||
|                     "type": "PB", | ||||
|                     "min_value": float(pb_match.group(1)), | ||||
|                     "max_value": float(pb_match.group(2)), | ||||
|                     "unit": "倍" | ||||
|                 } | ||||
|             else: | ||||
|                 return { | ||||
|                     "type": None, | ||||
|                     "min_value": None, | ||||
|                     "max_value": None, | ||||
|                     "unit": "倍" | ||||
|                 } | ||||
|                  | ||||
|         except Exception as e: | ||||
|             logger.error(f"提取估值区间时出错: {str(e)}") | ||||
|             return { | ||||
|                 "type": None, | ||||
|                 "min_value": None, | ||||
|                 "max_value": None, | ||||
|                 "unit": "倍" | ||||
|             } | ||||
| 
 | ||||
| 
 | ||||
| def test_valuation_analyzer(): | ||||
|     """测试估值指标分析器""" | ||||
|     try: | ||||
|         analyzer = ValuationIndicatorAnalyzer() | ||||
|          | ||||
|         # 测试用例 | ||||
|         test_cases = [ | ||||
|             ("000001", "平安银行"),  # 金融业,应该推荐PB | ||||
|             ("000002", "万科A"),     # 房地产,应该推荐PB | ||||
|             ("000858", "五粮液"),    # 消费品,应该推荐PE | ||||
|             ("002415", "海康威视"),  # 科技股,应该推荐PE | ||||
|         ] | ||||
|          | ||||
|         for stock_code, stock_name in test_cases: | ||||
|             print(f"\n测试股票: {stock_name}({stock_code})") | ||||
|             result = analyzer.analyze_valuation_indicator(stock_code, stock_name) | ||||
|              | ||||
|             if result.get("success"): | ||||
|                 print(f"推荐指标: {result.get('recommended_indicator')}") | ||||
|                 print(f"推理过程: {result.get('reasoning')}") | ||||
|                 print(f"估值区间: {result.get('valuation_range')}") | ||||
|             else: | ||||
|                 print(f"分析失败: {result.get('error')}") | ||||
|                  | ||||
|     except Exception as e: | ||||
|         print(f"测试失败: {str(e)}") | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|     test_valuation_analyzer()  | ||||
		Loading…
	
		Reference in New Issue