This commit is contained in:
满脸小星星 2025-10-11 14:05:18 +08:00
parent 4e4f4c8e4a
commit 8203b5dd74
10 changed files with 1542 additions and 7 deletions

View File

@ -11,7 +11,8 @@ show_help() {
echo " start [实例ID] 启动指定实例或所有实例"
echo " stop [实例ID] 停止指定实例或所有实例"
echo " restart [实例ID] 重启指定实例或所有实例"
echo " logs [实例ID] 实时查看指定实例的日志 (Ctrl+C 退出)"
echo " logs [实例ID] 查看最新10条日志并实时跟踪新日志"
echo " logs-follow [实例ID] 实时查看指定实例的日志 (Ctrl+C 退出)"
echo " status 显示实例状态概览"
echo " remove [实例ID] 删除指定实例或所有实例"
echo " rebuild [数量] 重新构建镜像并部署指定数量的实例"
@ -21,7 +22,8 @@ show_help() {
echo " $0 list 列出所有实例"
echo " $0 start 2 启动实例2"
echo " $0 stop all 停止所有实例"
echo " $0 logs 1 查看实例1的日志"
echo " $0 logs 1 查看实例1最新10条日志并实时跟踪"
echo " $0 logs-follow 1 实时跟踪实例1的日志"
echo " $0 rebuild 2 重新构建并部署2个实例"
echo " $0 update 热更新所有实例的代码"
exit 1
@ -68,6 +70,13 @@ restart_instance() {
# 函数:查看实例日志
view_logs() {
echo "显示实例 $1 的最新10条日志然后实时跟踪新日志 (按 Ctrl+C 退出):"
echo "----------------------------------------"
docker logs --tail 10 -f stock-app-$1
}
# 函数:实时查看实例日志
view_logs_follow() {
echo "正在实时显示实例 $1 的日志 (按 Ctrl+C 退出):"
echo "----------------------------------------"
docker logs -f stock-app-$1
@ -187,6 +196,13 @@ case "$1" in
fi
view_logs $2
;;
logs-follow)
if [ "$#" -lt 2 ]; then
echo "错误: 缺少实例ID参数"
show_help
fi
view_logs_follow $2
;;
status)
show_status
;;

View File

@ -245,7 +245,7 @@ def create_buy_strategy_callback(xt_trader, acc, buy_amount, logger):
# 检查是否有在途订单Redis
if is_stock_pending_order(stock_code):
logger.info(f"{stock_code} 有在途订单,跳过买入")
# logger.info(f"{stock_code} 有在途订单,跳过买入")
continue
# 集合竞价时段:只观察,不下单
@ -339,7 +339,7 @@ def create_sell_strategy_callback(xt_trader, acc, logger):
# 检查是否有在途订单
if is_stock_pending_order(stock_code):
logger.info(f"{stock_code} 有在途订单,跳过卖出")
# logger.info(f"{stock_code} 有在途订单,跳过卖出")
continue
# 集合竞价时段:只观察,不下单

View File

@ -3404,6 +3404,74 @@ def analyze_valuation_indicator():
"message": f"估值指标分析失败: {str(e)}"
}), 500
@app.route('/api/overlap/analysis', methods=['GET'])
def analyze_stock_overlap():
"""分析股票重叠度和滞涨情况
GET参数:
- stock_code: 股票代码 (例如: 300661.SZ)
- days: 分析天数默认3个交易日
返回格式:
{
"status": "success",
"data": {
"target_stock": "300661.SZ",
"target_stock_name": "圣邦股份",
"analysis_date": "2025-09-28 15:30:42",
"analysis_period_days": 3,
"industries": [...],
"concepts": [...],
"overlap_threshold": 5,
"top5_stocks": [...],
"lag_analysis": {...}
}
}
"""
try:
# 获取参数
stock_code = request.args.get('stock_code')
days = int(request.args.get('days', 3))
if not stock_code:
return jsonify({
"status": "error",
"message": "缺少必需参数: stock_code"
}), 400
# 导入重叠度分析器
from src.quantitative_analysis.overlap_analyzer import OverlapAnalyzer
# 创建分析器实例
analyzer = OverlapAnalyzer()
try:
# 执行分析
result = analyzer.analyze_stock_overlap(stock_code, days)
if 'error' in result:
return jsonify({
"status": "error",
"message": result['error']
}), 500
return jsonify({
"status": "success",
"data": result
})
finally:
# 关闭数据库连接
analyzer.close_connection()
except Exception as e:
logger.error(f"重叠度分析失败: {str(e)}")
return jsonify({
"status": "error",
"message": f"重叠度分析失败: {str(e)}"
}), 500
if __name__ == '__main__':
# 启动Web服务器

Binary file not shown.

View File

@ -289,10 +289,10 @@ def main():
analyzer = AverageDistanceFactor(db_url)
# 示例1: 分析特定行业
# result = analyzer.analyze_industry(industry_name="旅游")
result = analyzer.analyze_industry(industry_name="军工电子")
# 示例2: 分析特定概念
result = analyzer.analyze_industry(concept_name="人形机器人")
# result = analyzer.analyze_industry(concept_name="固态电池")
# 示例3: 查看可用的行业列表
# industries = analyzer.get_available_industries()

View File

@ -0,0 +1,668 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
行业重叠度和概念重叠度分析工具
用于分析某股票与相似股票的重叠度识别滞涨投资机会
"""
import sys
import os
import logging
from typing import Dict, List, Optional, Tuple
from pathlib import Path
from sqlalchemy import create_engine, text
import pandas as pd
from datetime import datetime, timedelta
# 添加项目根路径到Python路径
project_root = Path(__file__).parent.parent.parent
sys.path.append(str(project_root))
# 导入配置
try:
from src.valuation_analysis.config import DB_URL
except ImportError:
# 如果上面的导入失败,尝试直接导入
import importlib.util
config_path = os.path.join(project_root, 'src', 'valuation_analysis', 'config.py')
spec = importlib.util.spec_from_file_location("config", config_path)
config_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config_module)
DB_URL = config_module.DB_URL
# 导入股票代码格式转换工具
try:
from tools.stock_code_formatter import StockCodeFormatter
except ImportError:
# 如果上面的导入失败,尝试直接导入
import importlib.util
formatter_path = os.path.join(project_root, 'tools', 'stock_code_formatter.py')
spec = importlib.util.spec_from_file_location("stock_code_formatter", formatter_path)
formatter_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(formatter_module)
StockCodeFormatter = formatter_module.StockCodeFormatter
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class OverlapAnalyzer:
"""行业重叠度和概念重叠度分析器"""
def __init__(self):
"""初始化"""
# MySQL连接
self.mysql_engine = None
# 股票代码格式转换器
self.code_formatter = StockCodeFormatter()
# 重叠度评分权重
self.INDUSTRY_WEIGHT = 3 # 行业重叠权重
self.CONCEPT_WEIGHT = 1 # 概念重叠权重
self.MIN_OVERLAP_SCORE = 5 # 最小重叠分数阈值
self.connect_mysql()
def connect_mysql(self):
"""连接MySQL数据库"""
try:
self.mysql_engine = create_engine(
DB_URL,
pool_size=5,
max_overflow=10,
pool_recycle=3600
)
# 测试连接
with self.mysql_engine.connect() as conn:
conn.execute(text("SELECT 1"))
logger.info("MySQL数据库连接成功")
except Exception as e:
logger.error(f"MySQL数据库连接失败: {str(e)}")
raise
def normalize_stock_code(self, stock_code: str) -> str:
"""
标准化股票代码格式转换为数据库中使用的格式
Args:
stock_code: 输入的股票代码支持多种格式
Returns:
str: 标准化后的股票代码
"""
return self.code_formatter.to_prefix_format(stock_code)
def get_stock_industries(self, stock_code: str) -> List[Tuple[str, str]]:
"""
获取股票所属的行业板块
Args:
stock_code: 股票代码
Returns:
List[Tuple[str, str]]: [(板块代码, 板块名称)] 列表
"""
try:
normalized_code = self.normalize_stock_code(stock_code)
query = text("""
SELECT DISTINCT bk_code, bk_name
FROM gp_hybk
WHERE gp_code = :stock_code
AND bk_code IS NOT NULL
AND bk_name IS NOT NULL
""")
with self.mysql_engine.connect() as conn:
result = conn.execute(query, {"stock_code": normalized_code}).fetchall()
industries = [(str(row[0]), str(row[1])) for row in result]
logger.info(f"股票 {stock_code} 找到 {len(industries)} 个行业板块")
return industries
except Exception as e:
logger.error(f"获取股票 {stock_code} 行业板块失败: {str(e)}")
return []
def get_stock_concepts(self, stock_code: str) -> List[Tuple[str, str]]:
"""
获取股票所属的概念板块
Args:
stock_code: 股票代码
Returns:
List[Tuple[str, str]]: [(板块代码, 板块名称)] 列表
"""
try:
normalized_code = self.normalize_stock_code(stock_code)
query = text("""
SELECT DISTINCT bk_code, bk_name
FROM gp_gnbk
WHERE gp_code = :stock_code
AND bk_code IS NOT NULL
AND bk_name IS NOT NULL
""")
with self.mysql_engine.connect() as conn:
result = conn.execute(query, {"stock_code": normalized_code}).fetchall()
concepts = [(str(row[0]), str(row[1])) for row in result]
logger.info(f"股票 {stock_code} 找到 {len(concepts)} 个概念板块")
return concepts
except Exception as e:
logger.error(f"获取股票 {stock_code} 概念板块失败: {str(e)}")
return []
def get_similar_stocks_by_industry(self, industries: List[Tuple[str, str]]) -> Dict[str, List[str]]:
"""
根据行业板块获取相似股票
Args:
industries: 行业板块列表 [(板块代码, 板块名称)]
Returns:
Dict[str, List[str]]: {板块代码: [股票代码列表]}
"""
try:
similar_stocks = {}
for bk_code, bk_name in industries:
query = text("""
SELECT DISTINCT gp_code
FROM gp_hybk
WHERE bk_code = :bk_code
AND gp_code IS NOT NULL
""")
with self.mysql_engine.connect() as conn:
result = conn.execute(query, {"bk_code": bk_code}).fetchall()
stock_codes = [row[0] for row in result if row[0]]
similar_stocks[bk_code] = stock_codes
logger.info(f"行业板块 {bk_name}({bk_code}) 包含 {len(stock_codes)} 只股票")
return similar_stocks
except Exception as e:
logger.error(f"获取行业相似股票失败: {str(e)}")
return {}
def get_similar_stocks_by_concept(self, concepts: List[Tuple[str, str]]) -> Dict[str, List[str]]:
"""
根据概念板块获取相似股票
Args:
concepts: 概念板块列表 [(板块代码, 板块名称)]
Returns:
Dict[str, List[str]]: {板块代码: [股票代码列表]}
"""
try:
similar_stocks = {}
for bk_code, bk_name in concepts:
query = text("""
SELECT DISTINCT gp_code
FROM gp_gnbk
WHERE bk_code = :bk_code
AND gp_code IS NOT NULL
""")
with self.mysql_engine.connect() as conn:
result = conn.execute(query, {"bk_code": bk_code}).fetchall()
stock_codes = [row[0] for row in result if row[0]]
similar_stocks[bk_code] = stock_codes
logger.info(f"概念板块 {bk_name}({bk_code}) 包含 {len(stock_codes)} 只股票")
return similar_stocks
except Exception as e:
logger.error(f"获取概念相似股票失败: {str(e)}")
return {}
def calculate_overlap_scores(self, target_stock: str, industry_stocks: Dict[str, List[str]], concept_stocks: Dict[str, List[str]]) -> Dict[str, float]:
"""
计算重叠度分数
Args:
target_stock: 目标股票代码
industry_stocks: 行业相似股票字典 {板块代码: [股票代码列表]}
concept_stocks: 概念相似股票字典 {板块代码: [股票代码列表]}
Returns:
Dict[str, float]: {股票代码: 重叠分数}
"""
try:
overlap_scores = {}
target_stock_normalized = self.normalize_stock_code(target_stock)
# 计算行业重叠分数(每个行业+3分
for bk_code, stock_list in industry_stocks.items():
for stock_code in stock_list:
if stock_code == target_stock_normalized:
continue # 跳过目标股票本身
if stock_code not in overlap_scores:
overlap_scores[stock_code] = 0
overlap_scores[stock_code] += self.INDUSTRY_WEIGHT
# 计算概念重叠分数(每个概念+1分
for bk_code, stock_list in concept_stocks.items():
for stock_code in stock_list:
if stock_code == target_stock_normalized:
continue # 跳过目标股票本身
if stock_code not in overlap_scores:
overlap_scores[stock_code] = 0
overlap_scores[stock_code] += self.CONCEPT_WEIGHT
logger.info(f"计算出 {len(overlap_scores)} 只股票的重叠分数")
return overlap_scores
except Exception as e:
logger.error(f"计算重叠分数失败: {str(e)}")
return {}
def filter_high_overlap_stocks(self, overlap_scores: Dict[str, float]) -> List[Tuple[str, float]]:
"""
筛选高重叠度股票
Args:
overlap_scores: 重叠分数字典
Returns:
List[Tuple[str, float]]: [(股票代码, 分数)] 按分数降序排列
"""
try:
# 筛选分数大于阈值的股票
high_overlap_stocks = [
(stock_code, score) for stock_code, score in overlap_scores.items()
if score > self.MIN_OVERLAP_SCORE
]
# 按分数降序排列
high_overlap_stocks.sort(key=lambda x: x[1], reverse=True)
logger.info(f"筛选出 {len(high_overlap_stocks)} 只高重叠度股票(分数>{self.MIN_OVERLAP_SCORE}")
return high_overlap_stocks
except Exception as e:
logger.error(f"筛选高重叠度股票失败: {str(e)}")
return []
def get_recent_price_changes(self, stock_codes: List[str], days: int = 3) -> Dict[str, Dict]:
"""
获取股票的近期涨跌幅默认近3个交易日
Args:
stock_codes: 股票代码列表
days: 统计天数默认3个交易日
Returns:
Dict[str, Dict]: {股票代码: {price_change, change_pct, latest_price}}
"""
try:
price_changes = {}
for stock_code in stock_codes:
# 获取最近N个交易日的价格数据
query = text("""
SELECT close, percent, timestamp
FROM gp_day_data
WHERE symbol = :stock_code
ORDER BY timestamp DESC
LIMIT :days
""")
with self.mysql_engine.connect() as conn:
result = conn.execute(query, {"stock_code": stock_code, "days": days}).fetchall()
if len(result) >= 2: # 至少需要2个交易日的数据
# 最新价格(第一个)
latest_price = float(result[0][0]) if result[0][0] else None
latest_change_pct = float(result[0][1]) if result[0][1] else None
# N天前价格最后一个
historical_price = float(result[-1][0]) if result[-1][0] else None
if latest_price and historical_price:
price_change = latest_price - historical_price
change_pct = (price_change / historical_price) * 100
price_changes[stock_code] = {
'latest_price': latest_price,
'price_change': price_change,
'change_pct': change_pct,
'latest_change_pct': latest_change_pct,
'trading_days': len(result)
}
logger.info(f"获取到 {len(price_changes)} 只股票的近{days}个交易日涨跌幅数据")
return price_changes
except Exception as e:
logger.error(f"获取近期涨跌幅失败: {str(e)}")
return {}
def analyze_lag_performance(self, target_change: Dict, top5_stocks: List[Tuple[str, float]], similar_changes: Dict[str, Dict]) -> Dict:
"""
分析目标股票的滞涨情况基于近3个交易日
Args:
target_change: 目标股票涨跌幅数据
top5_stocks: 重叠度最高的5只股票 [(股票代码, 重叠分数)]
similar_changes: 相似股票涨跌幅数据
Returns:
Dict: 滞涨分析结果
"""
try:
if not target_change or 'change_pct' not in target_change:
logger.warning("目标股票涨跌幅数据不完整,无法进行滞涨分析")
return {
'target_lag_vs_top5': None,
'target_lag_vs_top1': None,
'top5_avg_change': None,
'top1_change': None
}
target_change_pct = target_change['change_pct']
# 获取前5只股票的有效涨跌幅数据
top5_changes = []
for stock_code, _ in top5_stocks:
if stock_code in similar_changes and 'change_pct' in similar_changes[stock_code]:
change_pct = similar_changes[stock_code]['change_pct']
if change_pct is not None:
top5_changes.append(change_pct)
if len(top5_changes) < 1:
logger.warning("没有有效的前5只股票涨跌幅数据")
return {
'target_lag_vs_top5': None,
'target_lag_vs_top1': None,
'top5_avg_change': None,
'top1_change': None
}
# 计算前5只股票的平均涨幅
top5_avg_change = sum(top5_changes) / len(top5_changes)
# 获取重叠度最高的1只股票涨幅
top1_change = top5_changes[0] if top5_changes else None
# 计算滞涨分数
lag_vs_top5 = target_change_pct - top5_avg_change if top5_avg_change is not None else None
lag_vs_top1 = target_change_pct - top1_change if top1_change is not None else None
# 滞涨等级判断
def get_lag_level(lag_score):
if lag_score is None:
return "无数据"
elif lag_score < -8:
return "严重滞涨"
elif lag_score < -4:
return "明显滞涨"
elif lag_score < -1.5:
return "轻微滞涨"
elif lag_score > 4:
return "跑赢同行"
elif lag_score > 1.5:
return "略胜同行"
else:
return "正常水平"
result = {
'target_lag_vs_top5': {
'lag_score': lag_vs_top5,
'lag_level': get_lag_level(lag_vs_top5),
'target_change_pct': target_change_pct,
'top5_avg_change': top5_avg_change
},
'target_lag_vs_top1': {
'lag_score': lag_vs_top1,
'lag_level': get_lag_level(lag_vs_top1),
'target_change_pct': target_change_pct,
'top1_change': top1_change
},
'top5_avg_change': top5_avg_change,
'top1_change': top1_change
}
logger.info(f"滞涨分析完成 - 目标股票: {target_change_pct:.2f}%, 前5平均: {top5_avg_change:.2f}%, 最高1只: {top1_change:.2f}%")
return result
except Exception as e:
logger.error(f"滞涨分析失败: {str(e)}")
return {
'target_lag_vs_top5': None,
'target_lag_vs_top1': None,
'top5_avg_change': None,
'top1_change': None
}
def get_stock_name(self, stock_code: str) -> Optional[str]:
"""
获取股票名称
Args:
stock_code: 股票代码
Returns:
str: 股票名称
"""
try:
normalized_code = self.normalize_stock_code(stock_code)
query = text("""
SELECT gp_name
FROM gp_code_all
WHERE gp_code = :stock_code
LIMIT 1
""")
with self.mysql_engine.connect() as conn:
result = conn.execute(query, {"stock_code": normalized_code}).fetchone()
if result and result[0]:
return result[0]
else:
return None
except Exception as e:
logger.error(f"获取股票名称失败 {stock_code}: {str(e)}")
return None
def analyze_stock_overlap(self, stock_code: str, days: int = 20) -> Dict:
"""
分析股票重叠度的主函数
Args:
stock_code: 目标股票代码
days: 统计涨跌幅的天数
Returns:
Dict: 分析结果
"""
try:
logger.info(f"开始分析股票 {stock_code} 的重叠度")
# 1. 获取目标股票的行业和概念板块
industries = self.get_stock_industries(stock_code)
concepts = self.get_stock_concepts(stock_code)
if not industries and not concepts:
logger.warning(f"股票 {stock_code} 没有找到行业或概念板块数据")
return {
'target_stock': stock_code,
'error': '未找到行业或概念板块数据'
}
# 2. 获取相似股票
industry_stocks = self.get_similar_stocks_by_industry(industries)
concept_stocks = self.get_similar_stocks_by_concept(concepts)
# 3. 计算重叠分数
overlap_scores = self.calculate_overlap_scores(stock_code, industry_stocks, concept_stocks)
# 4. 筛选高重叠度股票
high_overlap_stocks = self.filter_high_overlap_stocks(overlap_scores)
if not high_overlap_stocks:
logger.info(f"股票 {stock_code} 没有找到高重叠度股票(分数>{self.MIN_OVERLAP_SCORE}")
return {
'target_stock': stock_code,
'similar_stocks_count': 0,
'message': f'没有找到重叠度超过{self.MIN_OVERLAP_SCORE}分的股票'
}
# 5. 获取前5只重叠度最高的股票
top5_stocks = high_overlap_stocks[:5] # 取前5只
top5_stock_codes = [stock[0] for stock in top5_stocks]
all_stock_codes = [self.normalize_stock_code(stock_code)] + top5_stock_codes
price_changes = self.get_recent_price_changes(all_stock_codes, days)
# 6. 滞涨分析
target_change = price_changes.get(self.normalize_stock_code(stock_code))
similar_changes = {code: data for code, data in price_changes.items()
if code != self.normalize_stock_code(stock_code)}
lag_analysis = self.analyze_lag_performance(target_change, top5_stocks, similar_changes)
# 7. 组装前5只股票结果
top5_results = []
for similar_stock, overlap_score in top5_stocks:
stock_name = self.get_stock_name(similar_stock)
price_data = price_changes.get(similar_stock, {})
top5_results.append({
'stock_code': similar_stock,
'stock_name': stock_name,
'overlap_score': overlap_score,
'latest_price': price_data.get('latest_price'),
'price_change': price_data.get('price_change'),
'change_pct': price_data.get('change_pct')
})
return {
'target_stock': stock_code,
'target_stock_name': self.get_stock_name(stock_code),
'target_price_data': target_change,
'analysis_date': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'analysis_period_days': days,
'industries': [{'code': code, 'name': name} for code, name in industries],
'concepts': [{'code': code, 'name': name} for code, name in concepts],
'overlap_threshold': self.MIN_OVERLAP_SCORE,
'top5_stocks': top5_results,
'lag_analysis': lag_analysis
}
except Exception as e:
logger.error(f"分析股票重叠度失败 {stock_code}: {str(e)}")
return {
'target_stock': stock_code,
'error': str(e)
}
def close_connection(self):
"""关闭数据库连接"""
try:
if self.mysql_engine:
self.mysql_engine.dispose()
logger.info("MySQL连接已关闭")
except Exception as e:
logger.error(f"关闭MySQL连接失败: {str(e)}")
def main():
"""主函数 - 示例用法"""
analyzer = None
try:
# 创建分析器实例
analyzer = OverlapAnalyzer()
# 示例:分析某只股票的重叠度
stock_code = "300661.SZ" # 圣邦股份
print(f"=== 股票重叠度分析:{stock_code} ===")
# 执行分析
result = analyzer.analyze_stock_overlap(stock_code, days=3)
if 'error' in result:
print(f"分析失败: {result['error']}")
return
# 输出结果
print(f"\n目标股票: {result['target_stock_name']} ({result['target_stock']})")
print(f"分析日期: {result['analysis_date']}")
print(f"统计周期: {result['analysis_period_days']}")
if 'target_price_data' in result and result['target_price_data']:
target_data = result['target_price_data']
print(f"目标股票涨跌幅: {target_data.get('change_pct', 0):.2f}%")
print(f"\n行业板块: {len(result['industries'])}")
for industry in result['industries'][:3]: # 显示前3个
print(f" - {industry['name']} ({industry['code']})")
print(f"\n概念板块: {len(result['concepts'])}")
for concept in result['concepts'][:3]: # 显示前3个
print(f" - {concept['name']} ({concept['code']})")
print(f"\n重叠度最高的5只股票:")
print("-" * 80)
print(f"{'股票代码':<12} {'股票名称':<15} {'重叠分数':<8} {'最新价格':<10} {'涨跌幅':<10}")
print("-" * 80)
for stock in result['top5_stocks']:
print(f"{stock['stock_code']:<12} "
f"{stock['stock_name'] or '未知':<15} "
f"{stock['overlap_score']:<8.1f} "
f"{stock['latest_price'] or 0:<10.2f} "
f"{stock['change_pct'] or 0:<10.2f}%")
# 显示滞涨分析结果
lag_analysis = result.get('lag_analysis', {})
if lag_analysis:
print(f"\n滞涨分析结果:")
print("-" * 50)
# vs 前5平均
vs_top5 = lag_analysis.get('target_lag_vs_top5', {})
if vs_top5:
print(f"vs 前5平均: {vs_top5.get('lag_score', 0):.2f}% ({vs_top5.get('lag_level', '未知')})")
print(f" 目标股票: {vs_top5.get('target_change_pct', 0):.2f}%")
print(f" 前5平均: {vs_top5.get('top5_avg_change', 0):.2f}%")
# vs 最高1只
vs_top1 = lag_analysis.get('target_lag_vs_top1', {})
if vs_top1:
print(f"vs 最高1只: {vs_top1.get('lag_score', 0):.2f}% ({vs_top1.get('lag_level', '未知')})")
print(f" 目标股票: {vs_top1.get('target_change_pct', 0):.2f}%")
print(f" 最高1只: {vs_top1.get('top1_change', 0):.2f}%")
except Exception as e:
logger.error(f"程序执行失败: {str(e)}")
finally:
if analyzer:
analyzer.close_connection()
if __name__ == "__main__":
main()

View File

@ -713,6 +713,28 @@ def main():
print(f" 最高总分: {df['total_score'].max():.2f}")
print(f" 最低总分: {df['total_score'].min():.2f}")
# 生成成长+成熟合并的简表(仅三列:股票代码、总分、排名)
combined_parts = []
for stage, df in results.items():
if isinstance(df, pd.DataFrame) and not df.empty:
if 'stock_code' in df.columns and 'total_score' in df.columns:
combined_parts.append(df[['stock_code', 'total_score']].copy())
if combined_parts:
combined_df = pd.concat(combined_parts, ignore_index=True)
# 去除总分为空的数据
combined_df = combined_df.dropna(subset=['total_score'])
# 按总分降序并重新排名
combined_df = combined_df.sort_values('total_score', ascending=False).reset_index(drop=True)
combined_df['rank'] = range(1, len(combined_df) + 1)
# 保存文件
combined_file = f"tech_fundamental_factor_all_{datetime.now().strftime('%Y%m%d_%H%M')}.csv"
combined_df.to_csv(combined_file, index=False, encoding='utf-8-sig')
print(f"\n=== 合并结果(成长+成熟) ===")
print(f"总股票数量: {len(combined_df)}")
print(combined_df.head(10).to_string(index=False))
print(f"\n合并简表已保存到: {combined_file}")
print(f"\n=== 策略运行完成 ===")
except Exception as e:

View File

@ -0,0 +1,757 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
是固态电池人形机器人通信设备算力租赁四个赛道的筛选
结合个股历史基本面以及个股波动情况这里波动指标是一个波动越大分数越高的指标
v2并不是科技主题选股--这里就是入口--请执行这个文件
整合企业生命周期财务指标和平均距离因子分析
"""
import sys
import pandas as pd
import numpy as np
import logging
from typing import Dict, List, Tuple
from pathlib import Path
from sqlalchemy import create_engine, text
from datetime import datetime
import math
# 添加项目根路径到Python路径
project_root = Path(__file__).parent.parent.parent
sys.path.append(str(project_root))
# 导入依赖的工具类
from src.quantitative_analysis.company_lifecycle_factor import CompanyLifecycleFactor
from src.quantitative_analysis.financial_indicator_analyzer import FinancialIndicatorAnalyzer
from src.quantitative_analysis.average_distance_factor import AverageDistanceFactor
from src.valuation_analysis.config import MONGO_CONFIG2, DB_URL
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class TechFundamentalFactorStrategy:
"""科技主题基本面因子选股策略"""
def __init__(self):
"""初始化策略"""
self.lifecycle_calculator = CompanyLifecycleFactor()
self.financial_analyzer = FinancialIndicatorAnalyzer()
self.distance_calculator = AverageDistanceFactor(DB_URL)
# MySQL连接
self.mysql_engine = create_engine(
DB_URL,
pool_size=5,
max_overflow=10,
pool_recycle=3600
)
# 科技概念板块列表
self.tech_concepts = [
"固态电池", "人形机器人", "通信设备", "算力租赁"
]
logger.info("科技主题基本面因子选股策略初始化完成")
def get_tech_stocks(self) -> pd.DataFrame:
"""
获取科技概念板块的股票列表
Returns:
pd.DataFrame: 包含股票代码和名称的DataFrame
"""
try:
# 构建查询条件
concepts_str = "', '".join(self.tech_concepts)
query = text(f"""
SELECT DISTINCT gp_code as stock_code, gp_name as stock_name, bk_name as concept_name
FROM gp_gnbk
WHERE bk_name IN ('{concepts_str}')
UNION
SELECT DISTINCT gp_code as stock_code, gp_name as stock_name, bk_name as concept_name
FROM gp_hybk
WHERE bk_name = '通信设备'
ORDER BY stock_code
""")
with self.mysql_engine.connect() as conn:
df = pd.read_sql(query, conn)
logger.info(f"获取到 {len(df)} 只科技概念股票")
return df
except Exception as e:
logger.error(f"获取科技概念股票失败: {str(e)}")
return pd.DataFrame()
def filter_by_lifecycle(self, stock_codes: List[str], year: int = 2024) -> Dict[str, List[str]]:
"""
根据企业生命周期筛选股票
Args:
stock_codes: 股票代码列表
year: 分析年份
Returns:
Dict: 包含成长期和成熟期股票的字典
"""
try:
logger.info(f"开始分析 {len(stock_codes)} 只股票的企业生命周期")
# 批量计算生命周期
lifecycle_df = self.lifecycle_calculator.batch_calculate_lifecycle_factors(stock_codes, year)
# 筛选目标阶段的股票
# 引入期(1)和成长期(2)合并为成长期,成熟期(3)保持不变
growth_stage_stocks = lifecycle_df[
lifecycle_df['stage_id'].isin([1, 2])
]['stock_code'].tolist()
mature_stage_stocks = lifecycle_df[
lifecycle_df['stage_id'] == 3
]['stock_code'].tolist()
result = {
'growth': growth_stage_stocks,
'mature': mature_stage_stocks
}
logger.info(f"成长期股票: {len(growth_stage_stocks)}")
logger.info(f"成熟期股票: {len(mature_stage_stocks)}")
return result
except Exception as e:
logger.error(f"生命周期筛选失败: {str(e)}")
return {'growth': [], 'mature': []}
def calculate_distance_factors(self, growth_stocks: List[str], mature_stocks: List[str]) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
分别计算成长期和成熟期股票的平均距离因子
Args:
growth_stocks: 成长期股票列表
mature_stocks: 成熟期股票列表
Returns:
Tuple: (成长期距离因子DataFrame, 成熟期距离因子DataFrame)
"""
try:
growth_distance_df = pd.DataFrame()
mature_distance_df = pd.DataFrame()
# 计算成长期股票距离因子
if growth_stocks:
logger.info(f"计算 {len(growth_stocks)} 只成长期股票的距离因子")
growth_data = self.distance_calculator.get_stock_data(growth_stocks)
if not growth_data.empty:
growth_indicators = self.distance_calculator.calculate_technical_indicators(growth_data)
growth_distance_df = self.distance_calculator.calculate_distance_factor(growth_indicators)
# 计算成熟期股票距离因子
if mature_stocks:
logger.info(f"计算 {len(mature_stocks)} 只成熟期股票的距离因子")
mature_data = self.distance_calculator.get_stock_data(mature_stocks)
if not mature_data.empty:
mature_indicators = self.distance_calculator.calculate_technical_indicators(mature_data)
mature_distance_df = self.distance_calculator.calculate_distance_factor(mature_indicators)
return growth_distance_df, mature_distance_df
except Exception as e:
logger.error(f"计算距离因子失败: {str(e)}")
return pd.DataFrame(), pd.DataFrame()
def calculate_common_factors(self, stock_codes: List[str]) -> pd.DataFrame:
"""
计算通用因子
Args:
stock_codes: 股票代码列表
Returns:
pd.DataFrame: 包含通用因子的DataFrame
"""
try:
logger.info(f"计算 {len(stock_codes)} 只股票的通用因子")
results = []
latest_date = "2025-06-30" # 最新季度数据
annual_date = "2024-12-31" # 年报数据
for stock_code in stock_codes:
try:
factor_data = {'stock_code': stock_code}
# 1. 毛利率(使用最新数据)
gross_margin = self.financial_analyzer.analyze_gross_profit_margin(stock_code, latest_date)
factor_data['gross_profit_margin'] = gross_margin
# 2. 成长能力指标
growth_capability = self.financial_analyzer.analyze_growth_capability(stock_code)
if growth_capability is not None:
# 成长能力越高越好使用sigmoid函数映射到0-1
growth_score = 1 / (1 + math.exp(-growth_capability))
else:
growth_score = 0.5 # 默认中性评分
factor_data['growth_score'] = growth_score
# 3. 前五大供应商占比(使用年报数据)
supplier_conc = self.financial_analyzer.analyze_supplier_concentration(stock_code, annual_date)
factor_data['supplier_concentration'] = supplier_conc
# 4. 前五大客户占比(使用年报数据)
customer_conc = self.financial_analyzer.analyze_customer_concentration(stock_code, annual_date)
factor_data['customer_concentration'] = customer_conc
results.append(factor_data)
except Exception as e:
logger.warning(f"计算股票 {stock_code} 通用因子失败: {str(e)}")
continue
df = pd.DataFrame(results)
logger.info(f"成功计算 {len(df)} 只股票的通用因子")
return df
except Exception as e:
logger.error(f"计算通用因子失败: {str(e)}")
return pd.DataFrame()
def calculate_growth_specific_factors(self, stock_codes: List[str]) -> pd.DataFrame:
"""
计算成长期特色因子
Args:
stock_codes: 成长期股票代码列表
Returns:
pd.DataFrame: 包含成长期特色因子的DataFrame
"""
try:
logger.info(f"计算 {len(stock_codes)} 只成长期股票的特色因子")
results = []
latest_date = "2025-06-30" # 使用最新数据
annual_date = "2024-12-31" # 使用年度数据
for stock_code in stock_codes:
try:
factor_data = {'stock_code': stock_code}
# 1. 管理费用率(使用最新数据)
admin_ratio = self.financial_analyzer.analyze_admin_expense_ratio(stock_code, latest_date)
factor_data['admin_expense_ratio'] = admin_ratio
# 2. 研发费用折旧摊销占比(使用年度数据)
# financial_data = self.financial_analyzer.get_financial_data(stock_code, latest_date)
financial_data = self.financial_analyzer.get_financial_data(stock_code, annual_date)
if financial_data:
intangible_amortize = financial_data.get('cash_flow_statement', {}).get('IA_AMORTIZE', 0)
rd_expense = financial_data.get('profit_statement', {}).get('RESEARCH_EXPENSE', 0)
if rd_expense and rd_expense != 0:
rd_amortize_ratio = intangible_amortize / rd_expense if intangible_amortize else 0
else:
rd_amortize_ratio = None # 使用None而不是0避免这些股票获得最高分
factor_data['rd_amortize_ratio'] = rd_amortize_ratio
else:
factor_data['rd_amortize_ratio'] = None
# 3. 资产负债率(使用最新数据)
asset_liability_ratio = self.financial_analyzer.analyze_asset_liability_ratio(stock_code, latest_date)
factor_data['asset_liability_ratio'] = asset_liability_ratio
results.append(factor_data)
except Exception as e:
logger.warning(f"计算股票 {stock_code} 成长期特色因子失败: {str(e)}")
continue
df = pd.DataFrame(results)
logger.info(f"成功计算 {len(df)} 只成长期股票的特色因子")
return df
except Exception as e:
logger.error(f"计算成长期特色因子失败: {str(e)}")
return pd.DataFrame()
def calculate_mature_specific_factors(self, stock_codes: List[str]) -> pd.DataFrame:
"""
计算成熟期特色因子
Args:
stock_codes: 成熟期股票代码列表
Returns:
pd.DataFrame: 包含成熟期特色因子的DataFrame
"""
try:
logger.info(f"计算 {len(stock_codes)} 只成熟期股票的特色因子")
latest_date = "2025-06-30" # 使用最新数据
# 在循环外获取全A股PB和ROE数据避免重复查询
logger.info("获取全A股PB数据...")
all_pb_data = self.financial_analyzer.get_all_stocks_pb_data()
logger.info("获取全A股ROE数据...")
all_roe_data = self.financial_analyzer.get_all_stocks_roe_data(latest_date)
results = []
for stock_code in stock_codes:
try:
factor_data = {'stock_code': stock_code}
# 1. 应收账款周转率(使用最新数据)
formatted_stock_code = self.financial_analyzer.code_formatter.to_dot_format(stock_code)
financial_data = self.financial_analyzer.get_financial_data(formatted_stock_code, latest_date)
if financial_data:
revenue = financial_data.get('profit_statement', {}).get('OPERATE_INCOME', 0)
accounts_rece = financial_data.get('balance_sheet', {}).get('ACCOUNTS_RECE', 0)
if accounts_rece and accounts_rece != 0:
turnover_ratio = revenue / accounts_rece if revenue else 0
else:
turnover_ratio = None # 使用None而不是0
factor_data['accounts_receivable_turnover'] = turnover_ratio
else:
factor_data['accounts_receivable_turnover'] = None
# 2. 研发强度(使用最新数据)
rd_intensity = self.financial_analyzer.analyze_rd_expense_ratio(stock_code, latest_date)
factor_data['rd_intensity'] = rd_intensity
# 3. PB-ROE排名因子使用预获取的全A股数据
if all_pb_data and all_roe_data:
pb_roe_rank_factor = self.financial_analyzer.calculate_pb_roe_rank_factor(
stock_code, all_pb_data, all_roe_data
)
factor_data['pb_roe_rank_factor'] = pb_roe_rank_factor
else:
factor_data['pb_roe_rank_factor'] = None
results.append(factor_data)
except Exception as e:
logger.warning(f"计算股票 {stock_code} 成熟期特色因子失败: {str(e)}")
continue
df = pd.DataFrame(results)
logger.info(f"成功计算 {len(df)} 只成熟期股票的特色因子")
return df
except Exception as e:
logger.error(f"计算成熟期特色因子失败: {str(e)}")
return pd.DataFrame()
def run_strategy(self, year: int = 2024) -> Dict[str, pd.DataFrame]:
"""
运行完整的选股策略
Args:
year: 分析年份
Returns:
Dict: 包含成长期和成熟期股票分析结果的字典
"""
try:
logger.info("开始运行科技主题基本面因子选股策略")
# 1. 获取科技概念股票
tech_stocks_df = self.get_tech_stocks()
if tech_stocks_df.empty:
logger.error("未获取到科技概念股票")
return {}
stock_codes = tech_stocks_df['stock_code'].unique().tolist()
logger.info(f"共获取到 {len(stock_codes)} 只科技概念股票")
# 2. 按企业生命周期筛选
lifecycle_result = self.filter_by_lifecycle(stock_codes, year)
growth_stocks = lifecycle_result['growth']
mature_stocks = lifecycle_result['mature']
if not growth_stocks and not mature_stocks:
logger.warning("未找到符合条件的成长期或成熟期股票")
return {}
# 3. 计算平均距离因子
growth_distance_df, mature_distance_df = self.calculate_distance_factors(growth_stocks, mature_stocks)
# 4. 计算通用因子
all_qualified_stocks = growth_stocks + mature_stocks
common_factors_df = self.calculate_common_factors(all_qualified_stocks)
# 5. 计算特色因子
growth_specific_df = self.calculate_growth_specific_factors(growth_stocks) if growth_stocks else pd.DataFrame()
mature_specific_df = self.calculate_mature_specific_factors(mature_stocks) if mature_stocks else pd.DataFrame()
# 6. 合并结果并计算分数
result = {}
# 处理成长期股票
if not growth_specific_df.empty:
# 成长期结果合并
growth_result = growth_specific_df.copy()
# 合并距离因子
if not growth_distance_df.empty:
growth_result = growth_result.merge(
growth_distance_df[['symbol', 'avg_distance_factor']],
left_on='stock_code', right_on='symbol', how='left'
).drop('symbol', axis=1)
# 合并通用因子
if not common_factors_df.empty:
growth_result = growth_result.merge(
common_factors_df, on='stock_code', how='left'
)
# 计算因子分数
growth_result = self.calculate_factor_scores(growth_result, 'growth')
# 计算总分并排序
growth_result = self.calculate_total_score(growth_result, 'growth')
result['growth'] = growth_result
logger.info(f"成长期结果: {len(growth_result)} 只股票")
# 处理成熟期股票
if not mature_specific_df.empty:
# 成熟期结果合并
mature_result = mature_specific_df.copy()
# 合并距离因子
if not mature_distance_df.empty:
mature_result = mature_result.merge(
mature_distance_df[['symbol', 'avg_distance_factor']],
left_on='stock_code', right_on='symbol', how='left'
).drop('symbol', axis=1)
# 合并通用因子
if not common_factors_df.empty:
mature_result = mature_result.merge(
common_factors_df, on='stock_code', how='left'
)
# 计算因子分数
mature_result = self.calculate_factor_scores(mature_result, 'mature')
# 计算总分并排序
mature_result = self.calculate_total_score(mature_result, 'mature')
result['mature'] = mature_result
logger.info(f"成熟期结果: {len(mature_result)} 只股票")
logger.info("科技主题基本面因子选股策略运行完成")
return result
except Exception as e:
logger.error(f"策略运行失败: {str(e)}")
return {}
def calculate_factor_scores(self, df: pd.DataFrame, stage: str) -> pd.DataFrame:
"""
计算单因子打分0-100分位数
Args:
df: 包含因子数据的DataFrame
stage: 阶段类型 ('growth' 'mature')
Returns:
pd.DataFrame: 包含因子分数的DataFrame
"""
try:
if df.empty:
return df
df_scored = df.copy()
# 定义因子方向正向为True负向为False
factor_directions = {
# 通用因子
'gross_profit_margin': True, # 毛利率_环比增量 - 正向
'growth_score': True, # 成长能力 - 正向
'supplier_concentration': False, # 前5大供应商金额占比合计 - 负向
'customer_concentration': False, # 前5大客户收入金额占比合计 - 负向
'avg_distance_factor': True, # 平均距离因子 - 负向
# 成长期特色因子
'admin_expense_ratio': False, # 管理费用/营业总收入_环比增量 - 负向
'rd_amortize_ratio': False, # 研发费用折旧摊销占比_环比增量 - 负向
'asset_liability_ratio': True, # 资产负债率 - 正向
# 成熟期特色因子
'accounts_receivable_turnover': True, # 应收账款周转率 - 正向
'rd_intensity': True, # 研发费用直接投入占比_环比增量 - 正向
'pb_roe_rank_factor': False # PB-ROE排名因子 - 负向(越小越好)
}
# 为每个因子计算分位数分数
for column in df.columns:
if column == 'stock_code':
continue
# 只对有效值进行排名计算
values = df_scored[column].dropna()
if len(values) <= 1:
# 如果只有一个值或没有值所有股票都得50分或0分
if len(values) == 1:
df_scored[f'{column}_score'] = df_scored[column].apply(lambda x: 50 if pd.notna(x) else 0)
else:
df_scored[f'{column}_score'] = 0
continue
# 根据因子方向确定排序方式
is_positive = factor_directions.get(column, True)
# 计算排名分数
if is_positive:
# 正向因子:值越大分数越高
ranked_values = values.rank(pct=True) * 100
else:
# 负向因子:值越小分数越高
ranked_values = (1 - values.rank(pct=True)) * 100
# 初始化分数列
df_scored[f'{column}_score'] = 0.0
# 将分数赋值给对应的行
for idx in ranked_values.index:
df_scored.loc[idx, f'{column}_score'] = ranked_values[idx]
logger.info(f"完成 {stage} 阶段 {len(df_scored)} 只股票的因子打分")
return df_scored
except Exception as e:
logger.error(f"计算因子分数失败: {str(e)}")
import traceback
traceback.print_exc()
return df
def calculate_total_score(self, df: pd.DataFrame, stage: str) -> pd.DataFrame:
"""
计算总分
使用公式总分 = 1/8 * Mean(Si) + Mean(Si)/Std(Si)
Args:
df: 包含因子分数的DataFrame
stage: 阶段类型 ('growth' 'mature')
Returns:
pd.DataFrame: 包含总分的DataFrame
"""
try:
if df.empty:
return df
df_result = df.copy()
# 定义因子权重注意这里是factor_score而不是factor
if stage == 'growth':
factor_weights = {
# 通用因子
'gross_profit_margin_score': 1/8,
'growth_score_score': 1/8, # 注意这里是growth_score_score
'supplier_concentration_score': 1/8,
'customer_concentration_score': 1/8,
'avg_distance_factor_score': 2/8,
# 成长期特色因子
'admin_expense_ratio_score': 1/8,
'rd_amortize_ratio_score': 1/8,
'asset_liability_ratio_score': 1/8
}
else: # mature
factor_weights = {
# 通用因子
'gross_profit_margin_score': 1/8,
'growth_score_score': 1/8, # 注意这里是growth_score_score
'supplier_concentration_score': 1/8,
'customer_concentration_score': 1/8,
'avg_distance_factor_score': 2/8,
# 成熟期特色因子
'accounts_receivable_turnover_score': 1/8,
'rd_intensity_score': 1/8,
'pb_roe_rank_factor_score': 1/8
}
# 计算每只股票的总分
total_scores = []
for index, row in df_result.iterrows():
# 获取该股票的所有因子分数
factor_scores = []
valid_weights = []
for factor, weight in factor_weights.items():
if factor in row and pd.notna(row[factor]) and row[factor] > 0:
factor_scores.append(row[factor])
valid_weights.append(weight)
if len(factor_scores) == 0:
total_scores.append(0)
continue
factor_scores = np.array(factor_scores)
valid_weights = np.array(valid_weights)
# 重新标准化权重
valid_weights = valid_weights / valid_weights.sum()
# 计算加权平均分数
mean_score = np.average(factor_scores, weights=valid_weights)
# 计算调整项 Mean(Si)/Std(Si)
if len(factor_scores) > 1 and np.std(factor_scores) > 0:
adjustment = np.mean(factor_scores) / np.std(factor_scores)
else:
adjustment = 0
# 计算总分1/8 * Mean(Si) + Mean(Si)/Std(Si)
total_score = (1/8) * mean_score + adjustment
total_scores.append(total_score)
df_result['total_score'] = total_scores
# 按总分降序排列
df_result = df_result.sort_values('total_score', ascending=False).reset_index(drop=True)
df_result['rank'] = range(1, len(df_result) + 1)
logger.info(f"完成 {stage} 阶段 {len(df_result)} 只股票的总分计算")
return df_result
except Exception as e:
logger.error(f"计算总分失败: {str(e)}")
import traceback
traceback.print_exc()
return df
def close_connections(self):
"""关闭所有数据库连接"""
try:
if hasattr(self, 'lifecycle_calculator'):
del self.lifecycle_calculator
if hasattr(self, 'financial_analyzer'):
self.financial_analyzer.close_connection()
if hasattr(self, 'distance_calculator'):
del self.distance_calculator
if hasattr(self, 'mysql_engine'):
self.mysql_engine.dispose()
logger.info("数据库连接已关闭")
except Exception as e:
logger.error(f"关闭连接失败: {str(e)}")
def main():
"""主函数 - 科技主题基本面因子选股策略"""
strategy = None
try:
print("=== 科技主题基本面因子选股策略 ===")
print("数据说明:")
print("- 毛利率、净利润增长率等:使用最新数据 (2025-06-30)")
print("- 供应商客户集中度、折旧摊销、研发费用:使用年报数据 (2024-12-31)")
print()
# 创建策略实例
strategy = TechFundamentalFactorStrategy()
logger.info("策略实例创建成功")
# 运行策略
results = strategy.run_strategy(year=2024)
# 输出结果
if not results:
print("未获得分析结果")
return
for stage, df in results.items():
print(f"\n=== {stage.upper()} 阶段股票分析结果 ===")
print(f"股票数量: {len(df)}")
if not df.empty:
# 调试:显示所有列名
print(f"数据列: {list(df.columns)}")
# 显示前5只股票的关键指标
print("\n前5只股票:")
display_columns = [
'stock_code', 'gross_profit_margin', 'growth_score',
'supplier_concentration', 'customer_concentration',
'total_score', 'rank'
]
available_columns = [col for col in display_columns if col in df.columns]
print(df[available_columns].head(5).to_string(index=False))
# 保存完整结果
output_file = f"tech_fundamental_factor_{stage}_{datetime.now().strftime('%Y%m%d_%H%M')}.csv"
df.to_csv(output_file, index=False, encoding='utf-8-sig')
print(f"\n完整结果已保存到: {output_file}")
# 显示统计信息
print(f"\n统计信息:")
print(f" 平均总分: {df['total_score'].mean():.2f}")
print(f" 最高总分: {df['total_score'].max():.2f}")
print(f" 最低总分: {df['total_score'].min():.2f}")
# 生成成长+成熟合并的简表(仅三列:股票代码、总分、排名)
combined_parts = []
for stage, df in results.items():
if isinstance(df, pd.DataFrame) and not df.empty:
if 'stock_code' in df.columns and 'total_score' in df.columns:
combined_parts.append(df[['stock_code', 'total_score']].copy())
if combined_parts:
combined_df = pd.concat(combined_parts, ignore_index=True)
# 去除总分为空的数据
combined_df = combined_df.dropna(subset=['total_score'])
# 按总分降序并重新排名
combined_df = combined_df.sort_values('total_score', ascending=False).reset_index(drop=True)
combined_df['rank'] = range(1, len(combined_df) + 1)
# 追加概念列:获取每个股票所属概念(若多概念则以逗号分隔)
try:
concept_df = strategy.get_tech_stocks()
if not concept_df.empty and 'stock_code' in concept_df.columns and 'concept_name' in concept_df.columns:
concept_map = (
concept_df.groupby('stock_code')['concept_name']
.apply(lambda s: ','.join(sorted(set([str(x) for x in s if pd.notna(x)]))))
.to_dict()
)
combined_df['concepts'] = combined_df['stock_code'].map(concept_map)
else:
combined_df['concepts'] = None
except Exception:
combined_df['concepts'] = None
# 保存文件
combined_file = f"tech_fundamental_factor_all_{datetime.now().strftime('%Y%m%d_%H%M')}.csv"
combined_df.to_csv(combined_file, index=False, encoding='utf-8-sig')
print(f"\n=== 合并结果(成长+成熟) ===")
print(f"总股票数量: {len(combined_df)}")
print(combined_df.head(10).to_string(index=False))
print(f"\n合并简表已保存到: {combined_file}")
print(f"\n=== 策略运行完成 ===")
except Exception as e:
logger.error(f"程序执行失败: {str(e)}")
import traceback
traceback.print_exc()
finally:
if strategy:
strategy.close_connections()
if __name__ == "__main__":
main()

View File

@ -1,3 +1,5 @@
#美股行业板块导出,从通达信里面打开美股首页,然后栏目里面有个细分行业。点击导出所有栏目即可
import requests
import pandas as pd
from datetime import datetime
@ -291,3 +293,5 @@ if __name__ == '__main__':
fetch_and_store_us_stock_data_optimized(use_proxy=False) # 默认不使用代理

View File

@ -11,7 +11,7 @@ XUEQIU_HEADERS = {
'Accept-Encoding': 'gzip, deflate, br, zstd',
'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8',
'Client-Version': 'v2.44.75',
'Cookie': 'cookiesu=811743062689927; device_id=33fa3c7fca4a65f8f4354e10ed6b7470; smidV2=20250327160437f244626e8b47ca2a7992f30f389e4e790074ae48656a22f10; HMACCOUNT=8B64A2E3C307C8C0; s=c611ttmqlj; xq_is_login=1; u=8493411634; bid=4065a77ca57a69c83405d6e591ab5449_m8r2nhs8; __utma=1.434320573.1747189698.1747189698.1747189698.1; __utmc=1; __utmz=1.1747189698.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); snbim_minify=true; _c_WBKFRo=dsWgHR8i8KGPbIyhFlN51PHOzVuuNytvUAFppfkD; _nb_ioWEgULi=; aliyungf_tc=00c6b999835b16cea9e4a6aab36cca373a0976bf55ee74770d11f421f7119ad8; Hm_lvt_1db88642e346389874251b5a1eded6e3=1757464900; xq_a_token=975ab9f15a4965b9e557b9bc6f33bc1da20a0f49; xqat=975ab9f15a4965b9e557b9bc6f33bc1da20a0f49; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjg0OTM0MTE2MzQsImlzcyI6InVjIiwiZXhwIjoxNzYwMjU2NzM4LCJjdG0iOjE3NTc2NjQ3Mzg4MjUsImNpZCI6ImQ5ZDBuNEFadXAifQ.TMx4-TjKx96j5h6-EGiRIM2WKtJm1xctZhYidc40Em0pRcr0UBHAKBGl3No5r1BElYa9qnEDgNYI0Zv137Inx-EMPqm5cd1Z_ZjLdWOSLzT9qqBj8zdfuqJwP2nCYvC6KLjd8BvykS0vSFKqwb-r0WhEA3OzbO8teVNsaemdKAhBoIyP3-RQCfRxJ9RLNha1ZMdg66iZvfz_SOsG41y8IA9yyl-FFFJOq4TnAiywY1yO1QIJJhkh8YQqfnDfQQdSIFgJGToU980Lw1dm4aCDY-kvn-t18KjrL_hZJ_UNN65bgZsSsuWf-VQ7wsjjczNrfBYAHdZ6kES0CGo9g8IZZw; xq_r_token=c209224335327f29fc555d9910b43c0df6d52d5a; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1757774901; .thumbcache_f24b8bbe5a5934237bbc0eda20c1b6e7=rJD0qKtipTMjRBkLBVEyXbl0CiVeY7y4AxEZC0Vf6Zkou9cxp0NPsxwSrnOyFyBMr+Ws5/nJDO1NUalRDyAPsA%3D%3D; acw_tc=3ccdc14717578973700474899e2dc1c35b6358f1af81617250f8f00b4cf31c; ssxmod_itna=1-eqGxBDnGKYuxcD4kDRgxYq7ueYKS8DBP01Dp2xQyP08D60DB40Q0qRHhqDylAkiETFN1t42Y5D/KlYeDZDGFdDqx0Ei6FiYHK1ezjCGbKSAQY5P53Niio89NQ7DEQm6fjL1S4K7s5h8KRDo9n4hiDB3DbqDymgY5qxGGA4GwDGoD34DiDDPDb8rDALeD7qDFnenropTDm4GWneGfDDoDYbT3xiUYDDUvbeG2iET4DDN4bIGYZ2G76=r1doBip29xKiTDjqPD/ShUoiuzZKC4icFL2/amAeGyC5GuY6mWHQ77SWcbscAV70i8hx_Bx3rKqB5YGDRYqK8o2xY9iKR0YRDxeEDW0DWnQ8EwhDDiP46iRiGDYZtgrNMhXiY4MQA7bAilP4nPkFGCmqzBqGYesQGQiT3ihKbm5CexbxxD; ssxmod_itna2=1-eqGxBDnGKYuxcD4kDRgxYq7ueYKS8DBP01Dp2xQyP08D60DB40Q0qRHhqDylAkiETFN1t42YeDA4rYnRItORCitz/D3nyGQigbiD',
'Cookie': 'cookiesu=811743062689927; device_id=33fa3c7fca4a65f8f4354e10ed6b7470; smidV2=20250327160437f244626e8b47ca2a7992f30f389e4e790074ae48656a22f10; HMACCOUNT=8B64A2E3C307C8C0; s=c611ttmqlj; xq_is_login=1; u=8493411634; bid=4065a77ca57a69c83405d6e591ab5449_m8r2nhs8; __utma=1.434320573.1747189698.1747189698.1747189698.1; __utmc=1; __utmz=1.1747189698.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); snbim_minify=true; _c_WBKFRo=dsWgHR8i8KGPbIyhFlN51PHOzVuuNytvUAFppfkD; _nb_ioWEgULi=; aliyungf_tc=00c6b999835b16cea9e4a6aab36cca373a0976bf55ee74770d11f421f7119ad8; Hm_lvt_1db88642e346389874251b5a1eded6e3=1757464900; xq_a_token=0c9cfffc3d713428b4759d3c4e11fff91b618525; xqat=0c9cfffc3d713428b4759d3c4e11fff91b618525; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjg0OTM0MTE2MzQsImlzcyI6InVjIiwiZXhwIjoxNzYxNTYzMTU1LCJjdG0iOjE3NTg5NzExNTUyODksImNpZCI6ImQ5ZDBuNEFadXAifQ.KotT161D0bQF-m3HNgQFTknHqUpMUR_KWY7BAjiLKOaQocVghM85sCKUretUK5OpMDXMzGPhzxTWMs4VhGxKUHxHSu3inrbCw7rgGDtK0Lnr_6OXHkEMwDadN37V3AYbxKWaX609pACLK1q2cvRmGg94wAgj9KEqu76gdV4w4tRv4LupUJQgYb6M0GEVe7ejLs2_CdV5PV7j0PSjTtpjaeZWkc9YhW32vOyA6gg3fU9S4BQg7qgciYLI8AxiU-GYgFLyFSK2S7nvAngz8TEhNoQcClKrD4NeqqSj2nA5bh5_5FM8AbdbKGw6K8eIO0wkxCV2iUWBDMz-h160cX0GLw; xq_r_token=e586d0abb8de83a22a5d66be2f908954a50005b2; .thumbcache_f24b8bbe5a5934237bbc0eda20c1b6e7=nGvY6/KwbtfD3HgPBzY+S0khnrVCqr4mPyfsZ27X+GjYcRWS61PMogABu5uvj/LAd4TJsSFQiYwdEepZMxwg3A%3D%3D; ssxmod_itna=1-iqmxyQG=KWqGqwD4qeqY5Lor=G2zDuDBP01DpxYK0CDmxjKideDUDtTxR3R27rQA04D7777mqqeCQ_4D/A0ieDZDGKQDqx0or0KBiBUPehSmRxdW9gTBThssUUo8vG8FV4x9WCL5ZG9emiTjxIx_D0aDmKDUx4x_BAYDeWFDCeDQxirDD4DAmPDFxibDimAb4DdkK8EvUOpIDGrDlKDRchok4GWDiPD76gDl6gpbDDCDiyjKV3Dixiaz3eDBomc41iI4xi3kb8_c8b5Yq4EWi2ID7v3DlPqjdnIKy/M4E3Eps/9=agju40ODG6CofPchOBoFO3o6=rlwIlqrDKpY4Kleiix57xhx_eQDrWD57IpDx54_xmmZ7hpY21Bb0nQi/AO4b3mDrnNDt0=a0q345Bi5Drhl54nmeYnAD_mmD_GWq7h1iGq7YzGxA8DqBD=4nz7xNImYnb47xxD; ssxmod_itna2=1-iqmxyQG=KWqGqwD4qeqY5Lor=G2zDuDBP01DpxYK0CDmxjKideDUDtTxR3R27rQA04D7777mqqeCQ4DW_QRiAwxKA07vi3WDj4pxkh3pfaDlxTMHwkxxRl_UFFyKFmUR1v7kCiqQHALxyxuseYn8Q79bLg08eBKxkZwGFEy8ZxTGW7YkIrrzM=5YCx_Gem5Qg2HvQz9AhR0FvxfOG7AQwzoPjSpGmtApnKdwC4uUuzI6eDo2Bedxmf8L2fgms1KnurZO0K=m0ifvg8yDYb=qs=GimaBFojOsWf01ibDy6ZP5DLpur3mS//PdQPR0PqEEqiKseLxQQ3iKiC3ijQ5zKLELcAULPdKD6Q86ejjQKAk6K3leiePYGxdGpYpDbO3YPKa_x4RPTxTif5T3mOIGa8TCY44Y4hWn1AQq7G1nDQ7GQ7D5BDxzWw8bz3D; is_overseas=0; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1759979780',
'Referer': 'https://weibo.com/u/7735765253',
'Sec-Ch-Ua': '"Chromium";v="122", "Not(A:Brand";v="24", "Google Chrome";v="122"',
'Sec-Ch-Ua-Mobile': '?0',